Rechenregeln für Wurzelziehen
Formel
Rechenregeln für's Wurzelziehen
Wurzelrechnung geht vor Punktrechnung geht vor Strichrechnung
- \(\root n \of a = b \Leftrightarrow a = {b^n}\)
- \(\root n \of 0 = 0\)
- \(\root n \of 1 = 1\)
- \(\root 1 \of a = a\)
- \(\root 2 \of a = \sqrt a \)
Wurzel mit negativem Radikand
Wurzeln mit negativem Radikand kann man nur im Bereich der komplexen Zahlen lösen, dazu wird die imaginäre Einheit i definiert.
- \(\sqrt { - 1} = i\)
Addition bzw. Subtraktion bei gleichen Radikanden und gleichem Wurzelexponent
Zwei Wurzeln mit gleichen Radikanden a und gleichen Wurzelexponenten n werden addiert, indem man ihre Koeffizienten r, s heraushebt und diese Summe (r+s) mit der Wurzel multipliziert.
Zwei Wurzeln mit gleichen Radikanden a und gleichen Wurzelexponenten n werden addiert bzw. subtrahiert, indem man ihre Koeffizienten r, s heraushebt und die Summe (r+s) bzw. Differenz (r-s) bildet und diese mit der n-ten Wurzel aus a multipliziert.
\(r\root n \of a \pm s\root n \of a = \left( {r \pm s} \right) \cdot \root n \of a \)
Multiplikation von Wurzeln bei gleichen Wurzelexponenten
Man spricht von gleichnamigen Wurzeln, wenn deren Wurzelexponenten gleich sind. Die Multiplikation von Wurzeln mit gleichem Wurzelexponenten erfolgt in dem man die Wurzel aus dem Produkt der Radikanden zieht.
\(\root n \of a \cdot \root n \of b = \root n \of {a \cdot b}\)
mit
a, b | Radikanden |
n, m | Wurzelexponent |
Multiplikation von Wurzeln bei ungleichen Wurzelexponenten
Man spricht von ungleichnamigen Wurzeln, wenn deren Wurzelexponenten ungleich sind. Die Multiplikation von Wurzeln mit ungleichem Wurzelexponenten erfolgt, in dem man die Wurzelexponenten auf das kgV (keinste gemeinsame Vielfache) umrechnet und dann die Wurzel aus dem Produkt der Radikanden zieht. In Zeiten von Technologieeinsatz stören einen "unnötig" hohe Wurzelexponenten nicht mehr, dann geht es noch einfacher:
\(\sqrt[n]{a} \cdot \sqrt[m]{b} = \sqrt[{n \cdot m}]{{{a^m}}} \cdot \sqrt[{m \cdot n}]{{{b^n}}} = \sqrt[{n \cdot m}]{{{a^m} \cdot {b^n}}}\)
Division von Wurzeln bei gleichen Wurzelexponenten
Man spricht von gleichnamigen Wurzeln, wenn deren Wurzelexponenten gleich sind. Die Division von Wurzeln mit gleichem Wurzelexponenten erfolgt in dem man die Wurzel aus dem Quotienten der Radikanden zieht.
\(\dfrac{{\root n \of a }}{{\root n \of b }} = \root n \of {\dfrac{a}{b}} \)
Division von Wurzeln bei ungleichen Wurzelexponenten
Man spricht von ungleichnamigen Wurzeln, wenn deren Wurzelexponenten ungleich sind. Die Division von Wurzeln mit ungleichem Wurzelexponenten erfolgt, in dem man die Wurzelexponenten auf das kgV (keinste gemeinsame Vielfache) umrechnet und dann die Wurzel aus dem Quotient der Radikanden zieht. In Zeiten von Technologieeinsatz stören einen "unnötig" hohe Wurzelexponenten nicht mehr, dann geht es noch einfacher:
\(\dfrac{{\sqrt[n]{a}}}{{\sqrt[m]{b}}} = \dfrac{{\sqrt[{n \cdot m}]{{{a^m}}}}}{{\sqrt[{m \cdot n}]{{{b^n}}}}} = \sqrt[{n \cdot m}]{{\dfrac{{{a^m}}}{{{b^n}}}}}\)
Potenzieren von Wurzeln
Wurzeln werden potenziert, indem man den Radikanden potenziert und anschließend radiziert. Alternativ kann man aber auch zuerst radizieren und dann potenzieren.
\({\left( {\root n \of a } \right)^m} = \root n \of {{a^m}} \)
Radizieren von Wurzeln
Man radiziert eine Wurzel, d.h. man zieht die Wurzel von einer Wurzel, indem man die Wurzelexponenten multipliziert
\(\root n \of {\root m \of a } = \root {n.m} \of a \)
Umformen von Wurzeln in Potenzen
Wurzeln lassen sich sehr einfach in Potenzen umwandeln. Aus dem Radikand der Wurzel wird die Basis der Potenz, deren Exponent der Bruch "1 durch Wurzelexponent" ist.
\(\eqalign{ & \root n \of a = {a^{\left( {\dfrac{1}{n}} \right)}} \cr & \dfrac{1}{{\root n \of a }} = {a^{\left( { - \,\,\,\dfrac{1}{n}} \right)}} \cr & \root n \of {{a^k}} = {a^{\left( {\dfrac{k}{n}} \right)}} \cr & \cr & \root n \of {{a^k}} = \root {n.m} \of {{a^{k.m}}} \cr} \)
Anmerkung: Die Klammern bei den Exponenten werden nur geschrieben um die Lesbarkeit im Webbrowser zu verbessern. Sie sind natürlich nicht falsch, aber unnötig.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Potenzieren, Wurzelziehen und Logarithmieren | Potenzen, Wurzeln und Logarithmen ermöglichen es x zu berechnen wenn x unter einer Wurzel steht oder wenn x die Basis oder der Exponent einer Potenz ist. |
Aktuelle Lerneinheit
Rechenregeln für Wurzelziehen | Wurzelrechnung geht vor Punktrechnung geht vor Strichrechnung |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Rechenregeln für Logarithmen | Bild
|
Rechenregeln beim Potenzieren | Potenzrechnung geht vor Punktrechnung geht vor Strichrechnung |
Logarithmen Grundbegriffe | Bild
|
Radizieren bzw. Wurzelziehen | Radizieren bzw. Wurzelziehen ermöglicht es, x zu errechnen, wenn x die Basis einer Potenz ist. |
Potenzieren | Potenzieren ermöglicht es, x zu errechnen, wenn x unter einer Wurzel steht. |
Potenzen von Binomen | Ein Binom ist ein Polynom mit genau 2 Gliedern. Es kann eine Summe oder eine Differenz sein. |
Aufgaben zu diesem Thema
Aufgabe 4479
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzfeuchte und Holztrocknung - Aufgabe A_307
Teil b
Holzbretter der gleichen Holzsorte mit verschiedenen Dicken trocknen unterschiedlich schnell. Dieser Zusammenhang kann näherungsweise durch die nachstehende Formel beschrieben werden.
\(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{1,5}}\)
Dicke | Trockenzeit | |
Holzbrett 1 | d | t |
Holzbrett 2 | D | T |
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie denjenigen Ausdruck an, der nicht dem obigen Zusammenhang entspricht.
[1 aus 5]
- Ausdruck 1: \(\dfrac{T}{t} = {\left( {\dfrac{D}{d}} \right)^{\dfrac{3}{2}}}\)
- Ausdruck 2: \(\dfrac{T}{t} = {\left( {\dfrac{d}{D}} \right)^{ - 1,5}}\)
- Ausdruck 3: \(\dfrac{T}{t} = \sqrt {{{\left( {\dfrac{D}{d}} \right)}^3}} \)
- Ausdruck 4: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{ - \dfrac{3}{2}}}\)
- Ausdruck 5: \(\dfrac{t}{T} = {\left( {\dfrac{d}{D}} \right)^{1,5}}\)
Aufgabe 5
Addition von Wurzel im Bereich der komplexen Zahlen
Vereinfache unter Verwendung des Hauptwerts:
\(w = \sqrt { - 4} + \sqrt { - 9} + \sqrt { - 16}\)
Aufgabe 10
Subtraktion von Wurzeln im Bereich der komplexer Zahlen
Vereinfache unter Verwendung des Hauptwerts:
\(w = \sqrt { - 4} + \sqrt { - 9} - \sqrt { - 16}\)