BMBWF - AN 4.1 .. AN 4.3: Summation und Integral
Aufgabe 1166
AHS - 1_166 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erklärung des bestimmten Integrals
Der Begriff des bestimmten Integrals soll erklärt werden.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Textbausteine so, dass eine korrekte Aussage entsteht!
Ein bestimmtes Integral kann als _____1_____ einer/eines _______2_______ gedeutet werden.
1 | |
Summe | A |
Produkt | B |
Grenzwert | C |
2 | |
Grenzwertes von Summen | I |
Summe von Produkten | II |
Produktes von Grenzwerten | III |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1167
AHS - 1_167 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integral berechnen
Aufgabenstellung:
Berechnen Sie \(\int {\left( {a \cdot {h^3} + {a^2}} \right)} \,\,dh\)
Aufgabe 1172
AHS - 1_172 & Lehrstoff: AN 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Untersumme
Der Graph der in der nachstehenden Abbildung dargestellten Funktion f schließt mit der x-Achse im 1. Quadranten ein Flächenstück ein. Der Inhalt A dieses Flächenstücks kann mit dem Ausdruck \(f\left( {{x_1}} \right) \cdot \vartriangle x + f\left( {{x_2}} \right) \cdot \vartriangle x + f\left( {{x_3}} \right) \cdot \vartriangle x + f\left( {{x_4}} \right) \cdot \vartriangle x\) näherungsweise berechnet werden.
Aufgabenstellung:
Geben Sie die geometrische Bedeutung der Variablen Δx an und beschreiben Sie den Einfluss der Anzahl der Teilintervalle [xi; xi+1] von [0; a] auf die Genauigkeit des Näherungswertes für den Flächeninhalt A!
Aufgabe 1038
AHS - 1_038 & Lehrstoff: AN 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Unbestimmtes Integral
Gegeben sind Aussagen über die Lösung eines unbestimmten Integrals. Nur eine Rechnung ist richtig. Die Integrationskonstante wird in allen Fällen mit c = 0 angenommen.
- Aussage 1: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = {{\left( {6x + 5} \right)}^2}} \)
- Aussage 2: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3{x^2} + 5x}\)
- Aussage 3: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = {{\left( {6x + 15} \right)}^2}} \)
- Aussage 4: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3 \cdot \left( {{x^2} + 5x} \right)} \)
- Aussage 5: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 3{x^2} + 15} \)
- Aussage 6: \(\int {3 \cdot \left( {2x + 5} \right)\,\,dx = 6{x^2} + 15x}\)
Aufgabenstellung:
Kreuzen Sie die korrekte Rechnung an!
Aufgabe 1227
AHS - 1_227 & Lehrstoff: AN 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Integrationsregeln
Es sei f eine reelle Funktion und a eine reelle Zahl.
- Aussage 1: \(\int {a \cdot f\left( x \right)} \,\,dx = a \cdot \int {f\left( {x\,\,dx} \right)} \)
- Aussage 2: \(\int {f\left( {a \cdot x} \right)} \,\,dx = \int {f\left( a \right)} \,\,dx \cdot \int {f\left( x \right)} \,\,dx\)
- Aussage 3: \(\int {\left( {a + f\left( x \right)} \right)} \,\,dx = \int {a\,\,dx + \int {f\left( x \right)} } \,\,dx\)
- Aussage 4: \(\int {f\left( {a + x} \right)} \,\,dx = \int {f\left( a \right)} \,\,dx + \int {f\left( {x\,\,dx} \right)} \)
- Aussage 5: \({\int {f\left( x \right)} ^2}\,\,dx = \frac{{f{{\left( x \right)}^3}}}{3} + C\)
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Gleichungen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1060
AHS - 1_060 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bestimmte Integrale
Gegeben ist die Funktion \(f\left( x \right) = - {x^2} + 2x\)
Die nachstehende Tabelle zeigt Integrale
A | \(2 \cdot \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
B | \(\int\limits_1^3 {\left( { - {x^2} + 2x} \right)} \,\,dx\) |
C | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx + \left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|}\) |
D | \(\int\limits_0^1 {\left( { - {x^2} + 2x} \right)\,\,\operatorname{dx} - \int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx} } \) |
E | \(\left| {\int\limits_2^3 {\left( { - {x^2} + 2x} \right)\,\,dx} } \right|\) |
F | \(\int\limits_1^2 {\left( { - {x^2} + 2x} \right)\,\,dx}\) |
Die nachstehende Tabelle zeigt Graphen der Funktion mit unterschiedlich schraffierten Flächenstücken.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Beurteilen Sie, ob die obenstehend angeführten Integrale (aus A bis F) den Flächeninhalt einer der markierten Flächen der Graphen (1 bis 4) ergeben, und ordnen Sie entsprechend zu!
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Aufgabe 1095
AHS - 1_095 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fläche zwischen zwei Kurven
Die Funktionsgraphen von f und g schließen ein gemeinsames Flächenstück ein.
- Aussage 1: \(\int\limits_{ - 1}^6 {\left[ {g\left( x \right) - f\left( x \right)} \right]} \,\,dx\)
- Aussage 2: \(\int\limits_{ - 1}^6 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 3: \(\int\limits_{ - 1}^6 {f\left( x \right)\,\,dx + \int\limits_5^6 {g\left( x \right)\,\,dx - \int\limits_{ - 1}^5 {g\left( x \right)\,\,dx} } } \)
- Aussage 4: \(\left| {\int\limits_{ - 1}^6 {f\left( x \right)\,\,dx} } \right| + \left| {\int\limits_{ - 1}^6 {g\left( x \right)\,\,dx} } \right|\)
- Aussage 5: \(\int\limits_{ - 1}^6 {f\left( x \right)} \,\,dx - \int\limits_5^6 {g\left( x \right)\,\,dx + \left| {\int\limits_{ - 1}^5 {g\left( x \right)\,\,dx} } \right|}\)
Aufgabenstellung:
Mit welchen der nachstehenden Berechnungsvorschriften kann man den Flächeninhalt des gekennzeichneten Flächenstücks ermitteln? Kreuzen Sie die beiden zutreffenden Berechnungsvorschriften an!
Aufgabe 1096
AHS - 1_096 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Begrenzung einer Fläche
Der Inhalt derjenigen Fläche, die vom Graphen der Funktion \(f:x \to {x^2}\) , der positiven x-Achse und der Geraden mit der Gleichung x = a (a ∈ ℝ) eingeschlossen wird, beträgt 72 Flächeneinheiten.
Aufgabenstellung:
Berechnen Sie den Wert a!
Aufgabe 1113
AHS - 1_113 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Aussagen über bestimmte Integrale
Die stetige reelle Funktion f mit dem abgebildeten Graphen hat Nullstellen bei \({x_1} = 1;\,\,\,\,\,{x_2} = 3;\,\,\,\,\,{x_3} = 6;\)
- Aussage 1: \(\int\limits_1^3 {f\left( x \right)\,\,dx < 2} \)
- Aussage 2: \(\int\limits_1^6 {f\left( x \right)\,\,dx < 0}\)
- Aussage 3: \(\left| {\int\limits_3^6 {f\left( x \right)\,\,dx} } \right| < 6\)
- Aussage 4: \(\int\limits_1^3 {f\left( x \right)\,\,dx + \int\limits_3^6 {f\left( x \right)\,\,dx > 0} } \)
- Aussage 5: \(\int\limits_1^3 {f\left( x \right)} \,\,dx > 0\) und \(\int\limits_3^6 {f\left( x \right)\,\,dx < 0}\)
Aufgabenstellung:
Welche der folgenden Aussagen ist/sind zutreffend? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1170
AHS - 1_170 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Stahlfeder
Um eine Stahlfeder aus der Ruhelage x0 = 0 um x cm zu dehnen, ist die Kraft F(x) erforderlich.
Aufgabenstellung:
Geben Sie an, was in diesem Kontext mit dem Ausdruck \(\int\limits_0^8 {F\left( x \right)} \) berechnet wird!
Aufgabe 1183
AHS - 1_183 & Lehrstoff: AN 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächenberechnung
Die Summe A der Inhalte der beiden von den Graphen der Funktionen f und g eingeschlossenen Flächen soll berechnet werden.
- Aussage 1: \(A = \int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 2: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx + \int\limits_3^8 {\left[ {g\left( x \right) - f\left( x \right)} \right]} } \,\,dx\)
- Aussage 3: \(A = \left| {\int\limits_1^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]\,\,dx} } \right|\)
- Aussage 4: \(A = \int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx - \int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx\)
- Aussage 5: \(A = \left| {\int\limits_1^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right| + \left| {\int\limits_3^8 {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,\,dx} \right|\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Formel(n) an!