Headerbar Werbung für Region "nicht-DACH"
AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 3.1
Aufgaben zum Inhaltsbereich AG 3.1: Vektoren als Zahlentupel verständig einsetzen und im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 3.1
Vektoren
AG 3.1: Vektoren als Zahlentupel verständig einsetzen und im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgaben
Aufgabe 1208
AHS - 1_208 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Perlensterne
Für einen Adventmarkt sollen Perlensterne hergestellt werden. Den Materialbedarf für die verschiedenen Modelle kann man der nachstehenden Tabelle entnehmen.
Den Spalten der Tabelle entsprechen Vektoren im \({{\Bbb R}^4}\) :
- Materialbedarfsvektor S1 für den Stern 1
- Materialbedarfsvektor S2 für den Stern 2
- Kostenvektor K pro Packung zu 10 Stück
- Lagerbestand L
Material Stern 1 | Material Stern 2 | Kosten pro Packung Perlen | Lagerbestand der Perlen-Packungen | |
Wachsperle 8 mm | 1 | 0 | € 0,20 | 8 |
Wachsperle 3 mm | 72 | 84 | € 0,04 | 100 |
Glasperle 6 mm | 0 | 6 | € 0,90 | 12 |
Glasperle oval | 8 | 0 | € 1.50 | 9 |
Aufgabenstellung:
Geben Sie die Bedeutung des Ausdrucks \(10 \cdot L - \left( {5 \cdot {S_1} + 8 \cdot {S_2}} \right)\) in diesem Zusammenhang an.
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1419
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gehälter
Die Gehälter der 8 Mitarbeiter/innen eines Kleinunternehmens sind im Vektor \(G = \left( {\begin{array}{*{20}{c}} {{G_1}}\\ {...}\\ {{G_8}} \end{array}} \right)\) dargestellt.
Aufgabenstellung:
Geben Sie an, was der Ausdruck (das Skalarprodukt) \(G \cdot \left( {\begin{array}{*{20}{r}} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array}} \right)\) in diesem Kontext bedeutet!
Aufgabe 1296
AHS - 1_296 & Lehrstoff: AG 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vegetarische Menüs
In einem Restaurant wird täglich ein vegetarisches Menü angeboten. Der Vektor \(\overrightarrow a = \left( {\begin{array}{*{20}{r}} {{a_1}}\\ {{a_2}}\\ {{a_3}}\\ {{a_4}}\\ {{a_5}}\\ {{a_6}}\\ {{a_7}} \end{array}} \right)\)gibt die Anzahl der verkauften vegetarischen Menüs an den Wochentagen Montag bis Sonntag einer bestimmten Woche an, der Vektor \(\overrightarrow p = \left( {\begin{array}{*{20}{r}} {{p_1}}\\ {{p_2}}\\ {{p_3}}\\ {{p_4}}\\ {{p_5}}\\ {{p_6}}\\ {{p_7}} \end{array}} \right)\)die jeweiligen Menüpreise in Euro.
Aufgabenstellung
Interpretieren Sie das Skalarprodukt \(\overrightarrow a \cdot \overrightarrow p\) in diesem Zusammenhang!
Aufgabe 1569
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würstelstand
Ein Würstelstandbesitzer führt Aufzeichnungen über die Anzahl der täglich verkauften Würstel. Die Aufzeichnung eines bestimmten Tages ist nachstehend angegeben:
Anzahl der verkauften Portionen | Verkaufspreis pro Portion (in €) | Einkaufspreis pro Portion (in €) | |
Frankfurter | 24 | 2,70 | 0,90 |
Debreziner | 14 | 3,00 | 1,20 |
Burenwurst | 11 | 2,80 | 1,00 |
Käsekrainer | 19 | 3,20 | 1,40 |
Bratwurst | 18 | 3,20 | 1,20 |
Die mit Zahlenwerten ausgefüllten Spalten der Tabelle können als Vektoren angeschrieben werden. Dabei gibt der Vektor A die Anzahl der verkauften Portionen, der Vektor B die Verkaufspreise pro Portion (in Euro) und der Vektor C die Einkaufspreise pro Portion (in Euro) an.
Aufgabenstellung:
Geben Sie einen Ausdruck mithilfe der Vektoren A, B und C an, der den an diesem Tag erzielten Gesamtgewinn des Würstelstandbesitzers bezogen auf den Verkauf der Würstel beschreibt!
Gesamtgewinn =
Aufgabe 1210
AHS - 1_210 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren als Zahlentupel
Ein Betrieb produziert und verkauft die Produkte P1, … , P5. In der vorangegangenen Woche wurden xi Stück des Produktes Pi produziert und yi Stück davon verkauft. Das Produkt Pi wird zu einem Stückpreis vi verkauft, ki sind die Herstellungskosten pro Stück Pi. Die Vektoren X, Y, V und K sind folgendermaßen festgelegt:
\(X = \left( {\begin{array}{*{20}{r}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}}\\ {{x_5}} \end{array}} \right)\); \(Y = \left( {\begin{array}{*{20}{r}} {{y_1}}\\ {{y_2}}\\ {{y_3}}\\ {{y_4}}\\ {{y_5}} \end{array}} \right)\); \(V = \left( {\begin{array}{*{20}{r}} {{v_1}}\\ {{v_2}}\\ {{v_3}}\\ {{v_4}}\\ {{v_5}} \end{array}} \right)\); \(K = \left( {\begin{array}{*{20}{r}} {{k_1}}\\ {{k_2}}\\ {{k_3}}\\ {{k_4}}\\ {{k_5}} \end{array}} \right)\)
Aufgabenstellung:
Interpretieren Sie, welche Bedeutung der Ausdruck Y · V für den Betrieb hat!
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1209
AHS - 1_209 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Torten
Eine Konditorei stellt 3 verschiedene Torten her: Malakofftorte M, Sachertorte S und Obsttorte O. Die Konditorei beliefert damit 5 Wiederverkäufer. Die Liefermengen pro Tortenstück an die Wiederverkäufer W werden durch die Vektoren LM für die Malakofftorte, LS für die Sachertorte und LO für die Obsttorte ausgedrückt.
\(W = \left( {\begin{array}{*{20}{r}} {{W_1}}\\ {{W_2}}\\ {{W_3}}\\ {{W_4}}\\ {{W_5}} \end{array}} \right)\); \({L_M} = \left( {\begin{array}{*{20}{r}} {20}\\ {45}\\ {60}\\ {30}\\ {10} \end{array}} \right)\); \({L_S} = \left( {\begin{array}{*{20}{r}} {15}\\ {20}\\ {30}\\ 0\\ {20} \end{array}} \right)\); \({L_O} = \left( {\begin{array}{*{20}{r}} {10}\\ {35}\\ {40}\\ {10}\\ {25} \end{array}} \right)\)
Ein Stück Malakofftorte kostet beim Konditor € 1,80, ein Stück Sachertorte € 2,10 und ein Stück Obsttorte € 1,50.
Aufgabenstellung:
- 1. Teilaufgabe: Geben Sie an, wie viele Tortenstücke der Konditor insgesamt an den Wiederverkäufer W3 liefert!
- 2. Teilaufgabe: Berechnen Sie, wie viele Stück Sachertorte der Konditor insgesamt ausgeliefert hat!
Aufgabe 1206
AHS - 1_206 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Betriebsgewinn
Ein Betrieb produziert und verkauft die Produkte P1, … , P5. In der vorangegangenen Woche wurden xi Stück des Produktes Pi produziert und auch verkauft. Das Produkt Pi wird zu einem Stückpreis vi verkauft, ki sind die Herstellungskosten pro Stück Pi. Die Vektoren X, V und K sind folgendermaßen festgelegt:
\(X = \left( {\begin{array}{*{20}{r}} {{x_1}}\\ {{x_2}}\\ {{x_3}}\\ {{x_4}}\\ {{x_5}} \end{array}} \right)\); \(V = \left( {\begin{array}{*{20}{r}} {{v_1}}\\ {{v_2}}\\ {{v_3}}\\ {{v_4}}\\ {{v_5}} \end{array}} \right)\); \(K = \left( {\begin{array}{*{20}{r}} {{k_1}}\\ {{k_2}}\\ {{k_3}}\\ {{k_4}}\\ {{k_5}} \end{array}} \right)\)
Aufgabenstellung:
Geben Sie mithilfe der gegebenen Vektoren einen Term an, der für diesen Betrieb den Gewinn G der letzten Woche beschreibt!
Aufgabe 1207
AHS - 1_207 & Lehrstoff: AG 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Energiesparlampen
Ein Händler handelt mit 7 verschiedenen Typen von Energiesparlampen. In der Buchhaltung verwendet er folgende 7-dimensionale Vektoren (die Werte in den Vektoren beziehen sich auf einen bestimmten Tag):
- Lagerhaltungsvektor L1 für Lager 1 zu Beginn des Tages
- Lagerhaltungsvektor L2 für Lager 2 zu Beginn des Tages
- Vektor P der Verkaufspreise
- Vektor B, der die Anzahl der an diesem Tag ausgelieferten Lampen angibt
Aufgabenstellung
Geben Sie die Bedeutung des Ausdrucks (L1 + L2 – B) · P in diesem Zusammenhang an!
Aufgabe 1641
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2018 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verkaufszahlen
Ein Sportfachgeschäft bietet n verschiedene Sportartikel an. Die n Sportartikel sind in einer Datenbank nach ihrer Artikelnummer geordnet, sodass die Liste mit den entsprechenden Stückzahlen als Vektor (mit n Komponenten) aufgefasst werden kann.
Die Vektoren B, C und P (mit \(B,C,P \in {{\Bbb R}^n}\)) haben die folgende Bedeutung:
- Vektor B: Die Komponente \({b_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Lagerbestand des i-ten Artikels am Montagmorgen einer bestimmten Woche an.
- Vektor C: Die Komponente \({c_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Lagerbestand des i-ten Artikels am Samstagabend einer bestimmten Woche an.
- Vektor P: Die Komponente \({p_i} \in {\Bbb N}{\text{ mit 1}} \leqslant {\text{i}} \leqslant {\text{n}}\) gibt den Stückpreis in Euro des i-ten Artikels in dieser Woche an.
Das Fachgeschäft ist in der betrachteten Woche von Montag bis Samstag geöffnet und im Laufe dieser Woche werden weder Sportartikel nachgeliefert noch Stuckpreise verändert.
Aufgabenstellung:
Am Ende der Woche werden Daten für die betrachtete Woche (Montag bis Samstag) ausgewertet, wobei die erforderlichen Berechnungen mithilfe von Termen angeschrieben werden können. Ordnen Sie den vier gesuchten Größen (Aussage 1 bis 4) jeweils den für die Berechnung zutreffenden Term (aus A bis F) zu!
- Aussage 1: durchschnittliche Verkaufszahlen (pro Sportartikel) pro Tag in der betrachteten Woche
- Aussage 2: Gesamteinnahmen durch den Verkauf von Sportartikeln in der betrachteten Woche
- Aussage 3: Verkaufszahlen (pro Sportartikel) in der betrachteten Woche
- Aussage 4: Verkaufswert des Lagerbestands an Sportartikeln am Ende der betrachteten Woche
- Term A: \(6 \cdot \left( {B - C} \right)\)
- Term B: \(B - C\)
- Term C: \(\dfrac{1}{6} \cdot \left( {B - C} \right)\)
- Term D: \(P \cdot C\)
- Term E: \(P \cdot \left( {B - C} \right)\)
- Term F: \(6 \cdot P \cdot \left( {B - C} \right)\)
Banner Werbung für Region "nicht-DACH"
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1761
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Himmelsrichtungen
Nachstehend ist eine symmetrische Windrose abgebildet, die Himmelsrichtungen zeigt.
Die Geschwindigkeit eines Schiffes, das in Richtung Nordwest (NW) fahrt, wird durch den Vektor
\(\overrightarrow u = \left( {\begin{array}{*{20}{c}} { - a}\\ a \end{array}} \right)\) mit \(a \in {{\Bbb R}^ + }\) beschrieben.
Aufgabenstellung:
Geben Sie einen Vektor \(\overrightarrow v \) an, der die Geschwindigkeit eines Schiffes beschreibt, das in Richtung Nordost (NO) fährt.
[0 / 1 Punkt]
Aufgabe 1856
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpergröße
Die Komponenten des Vektors K1 geben die Körpergrößen der Kinder einer bestimmten Schulklasse (in cm) zu Beginn eines Schuljahres an. Die Komponenten des Vektors K2 geben die Körpergröße dieser Kinder (in cm) n Monate später an (n ∈ ℕ\{0}). (Die Körpergrößen sind sowohl in K1 als auch in K2 in alphabetischer Reihenfolge der Namen der Kinder geordnet.)
Aufgabenstellung:
Interpretieren Sie den Vektor \(\dfrac{1}{n} \cdot \left( {{K_2} - {K_1}} \right)\) im gegebenen Sachzusammenhang.
[0 / 1 P.]