Kinderlieder - Aufgabe B_511
Aufgabe B_511: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe mit 3 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4446
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil a
Die Pädagogin wählt 2 verschiedene Kinder aus den 26 Kindern ihrer Gruppe zufällig aus.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass beide Kinder sowohl das Kinderlied "Aramsamsam" als auch das Kinderlied "Backe, backe Kuchen" kennen.
[0 / 1 P.]
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie ein mögliches Ereignis E im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit mit dem nachstehenden Ausdruck berechnet wird.
\(P\left( E \right) = \dfrac{3}{{26}} \cdot \dfrac{2}{{25}}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4447
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil b
In der nachstehenden Tabelle sollen für diesen Sachverhalt die zugehörigen Prozentsätze für die Gruppe von 26 Kindern eingetragen werden.
kennen genau eines der beiden Kinderlieder | % |
kennen beide Kinderlieder | % |
kennen keines der beiden Kinderlieder | 11,54% |
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der obigen Tabelle die beiden fehlenden Zahlen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Kreisdiagramm so, dass es den durch die Tabelle beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
Aufgabe 4448
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil c
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Venn-Diagramm durch Eintragen aller Anzahlen in die dafür vorgesehenen Kästchen.
[0 / 1 P.]
G | Menge aller Kinder der Gruppe |
A | Menge der Kinder, die das Kinderlied Aramsamsam kennen |
B | Menge der Kinder, die das Kinderlied Backe, backe Kuchen kennen |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Anzahl der Elemente der Menge \(\left( {A \cup B} \right)\backslash \left( {A \cap B} \right)\)
[0 / 1 P.]
Mit den Kindern, denen beide Kinderlieder bekannt sind, singt die Pädagogin das bis dahin allen Kindern der Gruppe unbekannte Kinderlied "Twinkle, twinkle, little star".
T | Menge der Kinder, die das Kinderlied "Twinkle, twinkle, little star" mit der Pädagogin singen |
3. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(T \subseteq \left( {A \cup B} \right)\)
- Aussage 2: \(T \subseteq \left( {A \cap B} \right)\)
- Aussage 3: \(T \subseteq \left( {G\backslash B} \right)\)
- Aussage 4: \(T{\not \subseteq }\left( {B\backslash A} \right)\)
- Aussage 5: \(T{\not \subseteq }\left( {A\backslash B} \right)\)