Werbung
BMBWF - AG 2.1 .. AG 2.5: (Un-)Gleichungen und Gleichungssysteme
Aufgabe 1070
AHS - 1_070 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalenz von Formeln
Die nachstehende Abbildung zeigt ein Trapez:
- Aussage 1: \({A_1} = \dfrac{1}{2} \cdot \left( {a + c} \right) \cdot b\)
- Aussage 2: \({A_2} = b \cdot c + \dfrac{{\left( {a - c} \right) \cdot b}}{2}\)
- Aussage 3: \({A_3} = a \cdot b - 0,5 \cdot \left( {a - c} \right) \cdot b\)
- Aussage 4: \({A_4} = 0,5 \cdot a \cdot b - \left( {a + c} \right) \cdot b\)
- Aussage 5: \({A_5} = \frac{1}{2} \cdot a \cdot b + b \cdot c\)
Aufgabenstellung:
Mit welchen der obenstehenden Formeln kann man die Fläche dieses Trapezes berechnen? Kreuzen Sie die zutreffende(n) Formel(n) an!
Werbung
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1071
AHS - 1_071 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verkaufspreis
Für einen Laufmeter Stoff betragen die Selbstkosten S (in €), der Verkaufspreis ohne Mehrwertsteuer beträgt N (in €).
Aufgabenstellung:
Geben Sie eine Formel für den Verkaufspreis P (in €) inklusive 20 % Mehrwertsteuer an!
Aufgabe 1114
AHS - 1_114 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eintrittspreis
Der Eintrittspreis für ein Schwimmbad beträgt für Erwachsene p Euro. Kinder zahlen nur den halben Preis. Wenn man nach 15 Uhr das Schwimmbad besucht, gibt es auf den jeweils zu zahlenden Eintritt 60 % Ermäßigung.
Aufgabenstellung:
Geben Sie eine Formel für die Gesamteinnahmen E aus dem Eintrittskartenverkauf eines Tages an, wenn e1 Erwachsene und k1 Kinder bereits vor 15 Uhr den Tageseintritt bezahlt haben und e2 Erwachsene und k2 Kinder nach 15 Uhr den ermäßigten Tageseintritt bezahlt haben!
Aufgabe 1121
AHS - 1_121 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzen
Gegeben ist der Term \({\left( {{a^4} \cdot {b^{ - 5}} \cdot c} \right)^{ - 3}}\)
- Aussage 1: \(a \cdot {b^{ - 8}} \cdot {c^{ - 2}}\)
- Aussage 2: \(\dfrac{{{b^{15}}}}{{{a^{12}} \cdot {c^3}}}\)
- Aussage 3: \({\left( {\dfrac{{{b^8} \cdot {c^2}}}{a}} \right)^{ - 1}}\)
- Aussage 4: \({\left( {\dfrac{{{a^4} \cdot c}}{{{b^5}}}} \right)^{ - 1}}\)
- Aussage 5: \({a^{ - 12}} \cdot {b^{ - 15}} \cdot {c^{ - 3}}\)
Aufgabenstellung:
Welche(r) der obenstehenden Terme ist/sind zum gegebenen Term äquivalent? Kreuzen Sie die zutreffende(n) Antwort(en) an!
Aufgabe 1157
AHS - 1_157 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Angestellte Frauen und Männer
Für die Anzahl x der in einem Betrieb angestellten Frauen und die Anzahl y der im selben Betrieb angestellten Männer kann man folgende Aussagen machen:
- Die Anzahl der in diesem Betrieb angestellten Männer ist um 94 größer als jene der Frauen.
- Es sind dreimal so viele Männer wie Frauen im Betrieb angestellt.
- Aussage 1: \(x - y = 94\)
- Aussage 2: \(3x = 94\)
- Aussage 3: \(3x = y\)
- Aussage 4: \(3y = x\)
- Aussage 5: \(y - x = 94\)
Aufgabenstellung:
Kreuzen Sie diejenigen beiden Gleichungen an, die die oben angeführten Aussagen über die Anzahl der Angestellten mathematisch korrekt wiedergeben!
Werbung
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1175
AHS - 1_175 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Durchschnittsgeschwindigkeit
Ein Fahrzeug erreichte den 1. Messpunkt einer Abschnittskontrolle zur Geschwindigkeitsüberwachung (Section-Control) um 9:32:26 Uhr. Die Streckenlänge der Section-Control beträgt 10 km. Der 2. Messpunkt wurde um 9:38:21 Uhr durchfahren.
Aufgabenstellung:
Ermitteln Sie die Durchschnittsgeschwindigkeit des Fahrzeugs!
Aufgabe 1193
AHS - 1_193 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Druckkosten
Die Druckkosten K für Grußkarten bestehen aus einem Grundpreis von € 7 und einem Preis von € 0,40 pro Grußkarte.
- Aussage 1: \(K = 0,4 + 7n\)
- Aussage 2: \(K = 7,4 \cdot n\)
- Aussage 3: \(K = 7 + 0,4 \cdot n\)
- Aussage 4: \(K = 7,4 \cdot n + 0,4\)
- Aussage 5: \(K = 7,4 + n\)
- Aussage 6: \(K = 0,4 \cdot n - 7\)
Aufgabenstellung
Kreuzen Sie diejenige Formel an, die verwendet werden kann, um die Druckkosten von n Grußkarten zu bestimmen!
Aufgabe 1194
AHS - 1_194 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sparbuch
Ein Geldbetrag K wird auf ein Sparbuch gelegt. Er wächst in n Jahren bei einem effektiven Jahreszinssatz von p% auf \(K\left( n \right) = K \cdot {\left( {1 + \dfrac{p}{{100}}} \right)^n}\)
Aufgabenstellung
Geben Sie eine Formel an, die es ermöglicht, aus dem aktuellen Kontostand K(n) jenen des nächsten Jahres K( n + 1) zu errechnen!
Aufgabe 1295
AHS - 1_295 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reisekosten
Ein Reiseveranstalter plant eine Busreise, an der x Erwachsene und y Kinder teilnehmen. Für die Busfahrt müssen die Erwachsenen einen Preis von € p bezahlen, der Preis der Busfahrt ist für die Kinder um 30 % ermäßigt.
Aufgabenstellung
Stellen Sie einen Term auf, der die durchschnittlichen Kosten für die Busfahrt pro Reiseteilnehmer angibt!
Werbung
Schon für den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Aufgabe 1309
AHS - 1_309 & Lehrstoff: AG 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kegelstumpf
Ein 15 cm hohes Gefäß hat die Form eines geraden Kegelstumpfes. Der Radius am Boden hat eine Länge von 20 cm, der Radius mit der kleinsten Länge beträgt 11 cm.
Aufgabenstellung:
Geben Sie eine Formel für die Länge r(h) in Abhängigkeit von der Höhe h an!
Aufgabe 1348
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Punktladungen
Der Betrag F der Kraft zwischen zwei Punktladungen q1 und q2 im Abstand r wird beschrieben durch die Gleichung \(F = C \cdot \dfrac{{{q_1} \cdot {q_2}}}{{{r^2}}}\) (C ... physikalische Konstante).
Aufgabenstellung:
Geben Sie an, um welchen Faktor sich der Betrag F der Kraft ändert, wenn der Betrag der Punktladungen q1 und q2 jeweils verdoppelt und der Abstand r zwischen diesen beiden Punktladungen halbiert wird!
Aufgabe 1396
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Praxisgemeinschaft
In einer Gemeinschaftspraxis teilen sich sechs Therapeutinnen und Therapeuten die anfallende Monatsmiete zu gleichen Teilen auf. Am Ende des Jahres verlassen Mitglieder die Praxisgemeinschaft. Daher muss der Mietanteil für die Verbleibenden um jeweils € 20 erhöht werden und betragt ab dem neuen Jahr nun monatlich € 60.
Aufgabenstellung:
Stellen Sie anhand des gegebenen Textes eine Gleichung auf, mit der die Anzahl derjenigen Mitglieder, die die Praxisgemeinschaft verlassen, berechnet werden kann! Bezeichnen Sie dabei die Anzahl derjenigen Mitglieder, die die Praxisgemeinschaft verlassen, mit der Variablen x!