AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 2.2
Aufgaben zum Inhaltsbereich AG 2.2: Lineare Gleichungen aufstellen, interpretieren, umformen/lösen und die Lösung im Kontext deuten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 2.2
(Un-)Gleichungen und Gleichungssysteme
AG 2.2: Lineare Gleichungen aufstellen, interpretieren, umformen/lösen und die Lösung im Kontext deuten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
In dieser Übungseinheit lernst du bisherige österreichische AHS Typ I Maturabeispiele zum Themenbereich „Lineare Gleichungen“ kennen.
Folgendes musste man für die bisherigen Beispiele wissen:
- "Linearer Zusammenhang" assoziieren wir mit "Gleichung einer Geraden"
- \(y = k \cdot x + d\)
- d ist immer der y-Wert an der Stelle x=0 (der sogenannte Ordinatenabschnitt)
- k ist immer der Wert, um den der y-Wert zunimmt (k positiv) oder abnimmt (k negativ), wenn sich der x-Wert um 1 vergrößert.
- Geschwindigkeits-Zeit-Funktion: \(v = \dfrac{s}{t}{\text{ bzw}}{\text{.: v}}\left( t \right) = s'\left( t \right) = \dfrac{{ds}}{{dt}} = \int {a\left( t \right)} \,dt\)
- Beschleunigung mal einer Zeit ist eine Geschwindigkeit: \(a = \dfrac{v}{t} \to v = a \cdot t\)
Enthaltene Beispiele findest du, indem du die Aufgabennummer in den Suchslot eingibst
1 |
Aufgabe 1420 |
AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 2. Aufgabe |
2 |
Aufgabe 1591 |
AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 2. Aufgabe |
3 |
Aufgabe 1736 |
AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 3. Aufgabe |
4 |
Aufgabe 1759 |
AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 2. Aufgabe |
5 |
Aufgabe 1784 |
AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 2. Aufgabe |
6 |
Aufgabe 1808 |
AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 3. Aufgabe |
7 |
Aufgabe 1879 |
AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 2. Aufgabe |
8 |
Aufgabe 11222 |
AHS Matura vom 20. September 2022 - Teil-1-Aufgaben - 3. Aufgabe |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 1053
AHS - 1_053 & Lehrstoff: AG 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrenheit
In einigen Ländern wird die Temperatur in °F (Grad Fahrenheit) und nicht wie bei uns in °C (Grad Celsius) angegeben. Die Umrechnung von x °C in y °F erfolgt durch die Gleichung \(y = 1,8 \cdot x + 32\). Dabei gilt: \(0^\circ C \overset{\wedge}{=}32^\circ F\)
Aufgabenstellung:
Ermitteln Sie eine Gleichung, mit deren Hilfe die Temperatur von °F in °C umgerechnet werden kann!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1072
AHS - 1_072 & Lehrstoff: AG 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sport
Von den 958 Schülerinnen und Schülern einer Schule betreiben viele regelmäßig Sport. 319 Schüler/innen spielen regelmäßig Tennis, 810 gehen regelmäßig schwimmen. Nur 98 Schüler/innen geben an, weder Tennis zu spielen noch schwimmen zu gehen.
Aufgabenstellung:
Geben Sie an, wie viele Schüler/innen beide Sportarten regelmäßig betreiben!
Aufgabe 1196
AHS - 1_196 & Lehrstoff: AG 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schitag
Eine Reisegruppe mit k Kindern und e Erwachsenen fährt auf einen Schitag. Ein Tagesschipass kostet für ein Kind € x und für einen Erwachsenen € y. Die Busfahrt kostet pro Person € z.
- Aussage 1: \(y = 1,35 \cdot x\)
- Aussage 2: \(k = e - 15\)
Aufgabenstellung
Erklären Sie, was folgende Gleichungen im Zusammenhang mit dem Schitag ausdrücken!
Aufgabe 1420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrenheit und Celsius
Während man in Europa die Temperatur in Grad Celsius (°C) angibt, verwendet man in den USA die Einheit Grad Fahrenheit (°F). Zwischen der Temperatur TF in °F und der Temperatur TC in °C besteht ein linearer Zusammenhang. Für die Umrechnung von °F in °C gelten folgende Regeln:
- 32 °F entsprechen 0 °C.
- Eine Temperaturzunahme um 1°F entspricht einer Zunahme der Temperatur um 5/9 °C
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie eine Gleichung an, die den Zusammenhang zwischen der Temperatur TF (°F, Grad Fahrenheit) und der Temperatur TC (°C, Grad Celsius) beschreibt!
Aufgabe 1591
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2018 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrzeit von Zügen
Um 8:00 Uhr fährt ein Güterzug von Salzburg in Richtung Linz ab. Vom 124 km entfernten Bahnhof Linz fährt eine halbe Stunde später ein Schnellzug Richtung Salzburg ab. Der Güterzug bewegt sich mit einer mittleren Geschwindigkeit von 100 km/h, die mittlere Geschwindigkeit des Schnellzugs ist 150 km/h.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Mit t wird die Fahrzeit des Güterzugs in Stunden bezeichnet, die bis zur Begegnung der beiden Züge vergeht. Geben Sie eine Gleichung für die Berechnung der Fahrzeit t des Güterzugs an und berechnen Sie diese Fahrzeit!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1736
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Löwenrudel
Ein Rudel von Löwen besteht aus Männchen und Weibchen. Die Anzahl der Männchen in diesem Rudel wird mit m bezeichnet, jene der Weibchen mit w. Die beiden nachstehenden Gleichungen enthalten Informationen über dieses Rudel.
\(\eqalign{ & m + w = 21 \cr & 4 \cdot m + 1 = w \cr} \)
- Aussage 1: In diesem Rudel sind mehr Männchen als Weibchen.
- Aussage 2: Die Anzahl der Weibchen ist mehr als viermal so groß wie die Anzahl der Männchen.
- Aussage 3: Die Anzahl der Männchen ist um 1 kleiner als die Anzahl der Weibchen.
- Aussage 4: Insgesamt sind mehr als 20 Löwen (Männchen und Weibchen) in diesem Rudel.
- Aussage 5: Das Vierfache der Anzahl der Männchen ist um 1größer als die Anzahl der Weibchen.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden Aussagen an, die auf dieses Rudel zutreffen.
Aufgabe 1759
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewinnaufteilung
Eine Spielgemeinschaft bestehend aus 3 Spielerinnen gewinnt € 10.000. Dieser Gewinn wird wie folgt aufgeteilt: Spielerin B erhält um 50 % mehr als Spielerin A, Spielerin C erhält um 20 % weniger als Spielerin B. Mit x wird der Betrag bezeichnet, den Spielerin A erhält (x in €).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie eine Gleichung an, mit der x berechnet werden kann.
Aufgabe 1784
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bewegung eines Körpers
Ein Körper bewegt sich geradlinig mit einer konstanten Geschwindigkeit von 8 m/s und legt dabei 100 m zurück.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Interpretieren Sie die Lösung der Gleichung
\(8 \cdot x - 100 = 0\)
im gegebenen Kontext.
Aufgabe 1808
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Radfahrer
Die Schule von Alexander und die Schule von Bernhard sind durch eine 13 km lange geradlinige Straße verbunden.
An einem bestimmten Tag fahren beide von ihrer jeweiligen Schule aus mit dem Fahrrad entlang dieser Straße einander entgegen. Sie starten zu unterschiedlichen Zeitpunkten und begegnen einander t Stunden nach der Abfahrt von Alexander.
Bis zu ihrer Begegnung gilt:
- Alexander fährt mit einer durchschnittlichen Geschwindigkeit von 18 km/h.
- Bernhard fährt mit einer durchschnittlichen Geschwindigkeit von 24 km/h.
Im gegebenen Kontext wird die nachstehende Gleichung aufgestellt und gelöst.
\(\eqalign{ & 18 \cdot t + 24 \cdot \left( {t - \dfrac{1}{3}} \right) = 13 \cr & t = \dfrac{1}{2} \cr} \)
- Aussage 1: Alexander fährt um 10 Minuten später ab als Bernhard.
- Aussage 2: Alexander ist bis zur Begegnung mit Bernhard 30 Minuten unterwegs.
- Aussage 3: Bernhard ist bis zur Begegnung mit Alexander 20 Minuten unterwegs.
- Aussage 4: Alexander legt bis zur Begegnung mit Bernhard 9 km zurück.
- Aussage 5: Bei ihrer Begegnung sind die beiden von Bernhards Schule weiter entfernt als von Alexanders Schule.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden Aussagen an, die im gegebenen Kontext unter Beachtung der obigen Gleichung und deren Lösung zutreffend sind.
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1879
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bremsvorgang
Ein PKW fährt mit einer Geschwindigkeit von 30 m/s und soll mit einer Bremsung zum Stillstand gebracht werden. Seine Geschwindigkeit nimmt dabei pro Sekunde um b m/s ab. Mit t wird die Zeitdauer vom Beginn des Bremsvorgangs bis zum Stillstand des PKWs bezeichnet (t in s).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Gleichung auf, die den Zusammenhang zwischen t und b beschreibt.
Aufgabe 11222
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2022 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schulwechsel
An einer bestimmten allgemeinbildenden höheren Schule (AHS) beschließen gegen Ende der 8. Schulstufe k Schüler/innen, an dieser Schule die Oberstufe zu besuchen. Alle übrigen m Schüler/ innen beschließen, an eine berufsbildende höhere Schule (BHS) zu wechseln.
Dabei gilt:
- Ein Drittel der Schüler/innen dieser 8. Schulstufe wechselt an eine BHS.
- Die Anzahl derjenigen Schüler/innen, die an dieser Schule die Oberstufe besuchen, ist um 47 größer als die Anzahl derer, die an eine BHS wechseln.
Es sind folgende 5 Gleichungen gegeben:
- Gleichung 1: \(k + m = 3 \cdot m\)
- Gleichung 2: \(k = 2 \cdot m - 47\)
- Gleichung 3: \(m = k - 47\)
- Gleichung 4: \(k = 3 \cdot m\)
- Gleichung 5: \(3 \cdot k - m = 47\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Gleichungen an.