BMBWF - AG 1.1 .. AG 1.2: Grundbegriffe der Algebra
Aufgabe 1052
AHS - 1_052 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ganze Zahlen
Gegeben sind fünf Zahlen
- Aussage 1: \(\dfrac{{25}}{5}\)
- Aussage 2: \( - \,\,\,\sqrt[3]{8}\)
- Aussage 3: \(0,\mathop 4\limits^ \bullet \)
- Aussage 4: \(1,4 \cdot {10^{ - 3}}\)
- Aussage 5: \( - 1,4 \cdot {10^3}\)
Aufgabenstellung:
Kreuzen Sie diejenige(n) Zahl(en) an, die aus der Zahlenmenge ℤ ist/sind!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1069
AHS - 1_069 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Gegeben sind 5 Zahlen
- Aussage 1: \(0,4\)
- Aussage 2: \(\sqrt { - 8}\)
- Aussage 3: \(\dfrac{\pi }{5}\)
- Aussage 4: \(0\)
- Aussage 5: \({e^2}\)
Aufgabenstellung:
Kreuzen Sie diejenigen beiden Zahlen an, die aus der Zahlenmenge ℚ sind!
Aufgabe 1129
AHS - 1_129 & Lehrstoff: AG 1.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Gegeben sind folgende Zahlen:
- Aussage 1: \( - \dfrac{1}{2}\)
- Aussage 2: \(\dfrac{\pi }{5}\)
- Aussage 3: \(3,\mathop 5\limits^ \bullet \)
- Aussage 4: \(\sqrt 3\)
- Aussage 5: \( - \sqrt {16}\)
Aufgabenstellung:
Kreuzen Sie diejenige(n) Zahl(en) an, die rational ist/sind!
Aufgabe 1001
AHS - 1_001 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Algebraische Begriffe
Für die Oberflache O eines Zylinders mit dem Radius r und der Hohe h gilt \(O = 2{r^2}\pi + 2r\pi h\)
- Aussage 1: \(O > 2{r^2}\pi + r\pi h\) ist eine Formel
- Aussage 2: \(2{r^2}\pi + 2r\pi h\) ist ein Term
- Aussage 3: Jede Variable ist ein Term
- Aussage 4: \(O = 2r\pi \cdot \left( {r + h} \right)\) entsteht durch Umformung aus \(2{r^2}\pi + 2r\pi h\)
- Aussage 5: \(\pi\) ist eine Variable
Aufgabenstellung:
Welche der obigen Aussagen sind im Zusammenhang mit der gegebenen Formel zutreffend? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1191
AHS - 1_191 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalenz
Gegeben ist der Term: \(\dfrac{x}{{2b}} - \dfrac{y}{b}{\text{ mit }}b \ne 0\)
- Aussage 1: \(\dfrac{{2x - y}}{{2b}}\)
- Aussage 2: \(\dfrac{{x - 2y}}{b}\)
- Aussage 3: \(\dfrac{{x - 2y}}{{2b}}\)
- Aussage 4: \(\dfrac{{x - y}}{b}\)
- Aussage 5: \(x - 2y:2b\)
Aufgabenstellung
Kreuzen Sie den/ die zum gegebenen Term äquivalenten Term(e) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1192
AHS - 1_192 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Exponenten
Welche der angeführten Terme sind äquivalent zum Term \({x^{\dfrac{5}{3}}}\) mit x>0 ?
- Aussage 1: \(\dfrac{1}{{{x^{\dfrac{5}{3}}}}}\)
- Aussage 2: \(\root 3 \of {{x^5}}\)
- Aussage 3: \({x^{ - \dfrac{3}{5}}}\)
- Aussage 4: \(\root 5 \of {{x^3}}\)
- Aussage 5: \(x \cdot \root 3 \of {{x^2}}\)
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Terme an!