AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool AG 1.2
Aufgaben zum Inhaltsbereich AG 1.2: Wissen über algebraische Begriffe angemessen einsetzen können: Variable, Terme, Formeln, (Un-) Gleichungen, Gleichungssysteme, Äquivalenz, Umformungen, Lösbarkeit
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich AG 1.2
Grundbegriffe der Algebra
AG 1.2: Wissen über algebraische Begriffe angemessen einsetzen können: Variable, Terme, Formeln, (Un-) Gleichungen, Gleichungssysteme, Äquivalenz, Umformungen, Lösbarkeit
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
In dieser Übungseinheit lernst du bisherige österreichische AHS Typ I Maturabeispiele zum Themenbereich „algebraische Begriffe“ kennen.
Folgendes musste man für die bisherigen Beispiele wissen:
- Definitionsbereich der Logarithmusfunktion: \({D_f} = {{\Bbb R}^ + }\)
- Definitionsbereich der Wurzelfunktion: Die Wurzel kann im Bereich der reellen Zahlen nur von Werten größer gleich Null gezogen werden. \(\root n \of a = b \to a,b \in {{\Bbb R}^ + }\)
- Bei einem Bruch darf der Nenner nicht Null werden.
- Bei Gleichungen höheren Grades (x2, xn, …) darf man bei den Umformungen zur Lösungsfindung nicht durch die Variable x dividieren. Bei der Division durch x würde eine Lösung der Gleichung verloren gehen, daher ist eine Division durch x keine Äquivalenzumformung.
- Bei Ungleichungen muss man zwischen Äquivalenzumformungen ohne bzw. mit Umkehrung des Ungleichheitszeichens unterscheiden. Das Ungleichheitszeichen muss umgedreht werden, wenn man die Reihenfolge der Terme vertauscht oder wenn man mit einer negativen Zahl multipliziert oder dividiert.
Enthaltene Beispiele findest du, indem du die Aufgabennummer in den Suchslot eingibst
1 |
Aufgabe 1372 |
AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 2. Aufgabe |
2 |
Aufgabe 1445 |
AHS Matura vom 21. September 2015 - Teil-1-Aufgaben - 1. Aufgabe |
3 |
Aufgabe 1492 |
AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 2. Aufgabe |
4 |
Aufgabe 1614 |
AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 1. Aufgabe |
5 |
Aufgabe 1734 |
AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 1. Aufgabe |
6 |
Aufgabe 1807 |
AHS Matura vom 12. Jänner 2021 - Teil-2-Aufgaben - 1. Aufgabe |
7 |
Aufgabe 1830 |
AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 1. Aufgabe |
8 |
Aufgabe 11316 |
AHS Matura vom 10. Jänner 2024 - Teil-1-Aufgaben - 1. Aufgabe |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1001
AHS - 1_001 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Algebraische Begriffe
Für die Oberflache O eines Zylinders mit dem Radius r und der Hohe h gilt \(O = 2{r^2}\pi + 2r\pi h\)
- Aussage 1: \(O > 2{r^2}\pi + r\pi h\) ist eine Formel
- Aussage 2: \(2{r^2}\pi + 2r\pi h\) ist ein Term
- Aussage 3: Jede Variable ist ein Term
- Aussage 4: \(O = 2r\pi \cdot \left( {r + h} \right)\) entsteht durch Umformung aus \(2{r^2}\pi + 2r\pi h\)
- Aussage 5: \(\pi\) ist eine Variable
Aufgabenstellung:
Welche der obigen Aussagen sind im Zusammenhang mit der gegebenen Formel zutreffend? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1191
AHS - 1_191 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalenz
Gegeben ist der Term: \(\dfrac{x}{{2b}} - \dfrac{y}{b}{\text{ mit }}b \ne 0\)
- Aussage 1: \(\dfrac{{2x - y}}{{2b}}\)
- Aussage 2: \(\dfrac{{x - 2y}}{b}\)
- Aussage 3: \(\dfrac{{x - 2y}}{{2b}}\)
- Aussage 4: \(\dfrac{{x - y}}{b}\)
- Aussage 5: \(x - 2y:2b\)
Aufgabenstellung
Kreuzen Sie den/ die zum gegebenen Term äquivalenten Term(e) an!
Aufgabe 1192
AHS - 1_192 & Lehrstoff: AG 1.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Exponenten
Welche der angeführten Terme sind äquivalent zum Term \({x^{\dfrac{5}{3}}}\) mit x>0 ?
- Aussage 1: \(\dfrac{1}{{{x^{\dfrac{5}{3}}}}}\)
- Aussage 2: \(\root 3 \of {{x^5}}\)
- Aussage 3: \({x^{ - \dfrac{3}{5}}}\)
- Aussage 4: \(\root 5 \of {{x^3}}\)
- Aussage 5: \(x \cdot \root 3 \of {{x^2}}\)
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Terme an!
Aufgabe 1445
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungen
Gegeben sind fünf Gleichungen in der Unbekannten x.
- Aussage 1: \(2x = 2x + 1\)
- Aussage 2: \(x = 2x\)
- Aussage 3: \({x^2} + 1 = 0\)
- Aussage 4: \({x^2} = - x\)
- Aussage 5: \({x^3} = - 1\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Welche dieser Gleichungen besitzt / besitzen zumindest eine reelle Lösung? Kreuzen Sie die zutreffende(n) Gleichung(en) an!
Aufgabe 1492
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalenzumformung
Nicht jede Umformung einer Gleichung ist eine Äquivalenzumformung.
\(\eqalign{ & {x^2} - 5x = 0\,\,\,\,\,\,\,\,\left| {:x} \right. \cr & x - 5 = 0 \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Erklären Sie konkret auf das oben angegebene Beispiel bezogen, warum es sich bei der durchgeführten Umformung um keine Äquivalenzumformung handelt! Die Grundmenge ist die Menge der reellen Zahlen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1614
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang zweier Variablen
Für \(a,b \in {\Bbb R}\) gilt der Zusammenhang \(a \cdot b = 1\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Zwei der fünf nachstehenden Aussagen treffen in jedem Fall zu. Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: Wenn a kleiner als null ist, dann ist auch b kleiner als null.
- Aussage 2: Die Vorzeichen von a und b können unterschiedlich sein.
- Aussage 3: Für jedes \(n \in {\Bbb N}\) gilt: \(\left( {a - n} \right) \cdot \left( {b + n} \right) = 1\)
- Aussage 4: Für jedes \(n \in {\Bbb N}\backslash \left\{ 0 \right\}\) gilt: \(\left( {a \cdot n} \right) \cdot \left( {\dfrac{b}{n}} \right) = 1\)
- Aussage 5: \(a \ne b\)
Aufgabe 1734
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalente Gleichungen
Gegeben ist die Gleichung \(\dfrac{x}{2} - 4 = 3{\text{ in }}x \in {\Bbb R}\)
- Aussage 1: \(x - 4 = 6\)
- Aussage 2: \(\dfrac{x}{2} = - 1\)
- Aussage 3: \(\dfrac{x}{2} - 3 = 4\)
- Aussage 4: \(\dfrac{{x - 8}}{2} = 3\)
- Aussage 5: \({\left( {\dfrac{x}{2} - 4} \right)^2} = 9\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden obenstehenden Gleichungen in \(x \in {\Bbb R}\) an, die zur gegebenen Gleichung äquivalent sind.
Aufgabe 1807
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lösung einer Gleichung
Nachstehend ist eine Gleichung in \(x \in {\Bbb R}\) gegeben.
\(\sqrt {2 \cdot x - 6} = a{\text{ mit }}a \in {{\Bbb R}_0}^ + \)
- Aussage 1: \(( - \infty ;\left. { - 3} \right]\)
- Aussage 2: \(\left[ 3 \right.;\left. \infty \right)\)
- Aussage 3: \(\left[ { - 3} \right.;\left. 0 \right)\)
- Aussage 4: \(\left[ 0 \right.;\left. 3 \right)\)
- Aussage 5: \(\left[ { - 6;\left. { - 3} \right)} \right.\)
- Aussage 6: \(\left[ 3 \right.;\left. 6 \right]\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie dasjenige Intervall an, das für alle Werte von \(a \in {{\Bbb R}_0}^+ \) die Lösung der gegebenen Gleichung enthält.
Aufgabe 1372
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Definitionsmengen
Es sind vier Terme (1 bis 4) und sechs Mengen (A bis F) gegeben.
- Term 1: \(\ln \left( {x + 1} \right)\)
- Term 2: \(\sqrt {1 - x} \)
- Term 3: \(\dfrac{{2 \cdot x}}{{x \cdot {{\left( {x + 1} \right)}^2}}}\)
- Term 4: \(\dfrac{{2 \cdot x}}{{{x^2} + 1}}\)
- Definitionsmenge A: \({D_A} = {\Bbb R}\)
- Definitionsmenge B: \({D_B} = \left( {1;\infty } \right)\)
- Definitionsmenge C: \({D_C} = \left( { - 1;\infty } \right)\)
- Definitionsmenge D: \({D_D} = {\Bbb R}\backslash \left\{ { - 1;0} \right\}\)
- Definitionsmenge E: \({D_E} = \left( { - \infty ;1} \right)\)
- Definitionsmenge F: \({D_F} = \left( { - \infty ;1} \right)\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ordnen Sie den vier Termen jeweils die entsprechende größtmögliche Definitionsmenge \({D_A},{D_B},...,{D_F}\) in der Menge der reellen Zahlen zu!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1830
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21. Mai 2021 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rationale Zahlen
Nachstehend sind Aussagen über rationale Zahlen gegeben.
- Aussage 1: Für alle rationalen Zahlen a und b gilt: \(a + b \ge 0\)
- Aussage 2: Zu jeder rationalen Zahl a gibt es eine rationale Zahl b so, dass gilt: \(a + b = 0\)
- Aussage 3: Es gibt rationale Zahlen a und b mit: \(a \cdot b < b\)
- Aussage 4: Wenn von den beiden rationalen Zahlen a und b, b ≠ 0, genau eine positiv ist, dann ist der Quotient \(\dfrac{a}{b}\) auf jeden Fall positiv.
- Aussage 5: Wenn von den beiden rationalen Zahlen a und b mindestens eine negativ ist, dann ist das Produkt \(a \cdot b\) auf jeden Fall negativ.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an. [2 aus 5]
Aufgabe 11293
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 19. September 2023 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Taxifahrt – 11293. Aufgabe 1_1293
Bei einem bestimmten Taxiunternehmen setzt sich der Tagestarif folgendermaßen zusammen:
- Zusätzlich zu einer festgelegten Grundgebühr G ist pro Kilometer zurückgelegter Strecke eine Gebühr K zu bezahlen.
- Für eine Fahrt, die nachts zwischen 20:00 Uhr und 6:00 Uhr beginnt, ist ein Aufschlag auf den Tagestarif von 30 % zu entrichten.
- Ein Fahrgast steigt um 22:00 Uhr in ein Taxi dieses Taxiunternehmens ein und fahrt damit eine Strecke von S Kilometern.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Stellen Sie eine Gleichung zur Berechnung der gesamten Fahrtkosten F für diese Fahrt auf. Verwenden Sie dabei G, S und K.
Aufgabe 11316
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Jänner 2024 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Gleichung
Gegeben ist die folgende Gleichung in der Variablen \(x \in {\Bbb Z}\)
\(2 \cdot x - c = 0{\text{ mit }}c \in {\Bbb R}\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie alle reellen Zahlen c an, für die diese Gleichung eine Lösung in \({\Bbb Z}\) hat.