AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 5.6
Aufgaben zum Inhaltsbereich FA 5.6: Die Angemessenheit einer Beschreibung mittels Exponentialfunktion bewerten können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 5.6
Exponentialfunktion
\(\eqalign{ & f\left( x \right) = a \cdot {b^x} \cr & f\left( x \right) = a \cdot {e^{\lambda \cdot x}} \cr & {\text{mit: a}}{\text{,b}} \in {{\Bbb R}^ + },\,\,\lambda \in {\Bbb R} \cr}\)
FA 5.6: Die Angemessenheit einer Beschreibung mittels Exponentialfunktion bewerten können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1085
AHS - 1_085 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Relative und absolute Zunahme
Die Formel \(N\left( t \right) = {N_0} \cdot {a^t}{\text{ mit }}a > 1\) beschreibt ein exponentielles Wachstum.
- Aussage 1: Die relative Zunahme ist in gleichen Zeitintervallen gleich groß.
- Aussage 2: Die absolute Zunahme ist in gleichen Zeitintervallen gleich groß.
- Aussage 3: Die relative Zunahme ist unabhängig von N0.
- Aussage 4: Die relative Zunahme ist abhängig von a.
- Aussage 5: Die absolute Zunahme ist abhängig von a.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1276
AHS - 1_276 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lichtintensität
Licht, das in eine dicke Schicht aus Glas eintritt, wird abgeschwächt. Der Hersteller eines Sicherheitsglases gibt an, dass die Intensität I des Lichts pro Zentimeter um 6 % abnimmt. I0 gibt die Intensität des Lichts bei Eintritt in das Glas an.
- Aussage 1: \(I\left( x \right) = {I_0} \cdot {0,94^x}\)
- Aussage 2: \(I\left( x \right) = {I_0} \cdot {1,06^x}\)
- Aussage 3: \(I\left( x \right) = {I_0} \cdot {0,06^x} + {I_0}\)
- Aussage 4: \(I\left( x \right) = {I_0} \cdot \left( {1 - 0,06 \cdot x} \right)\)
- Aussage 5: \(I\left( x \right) = 1 - {I_0} \cdot 0,06 \cdot x\)
- Aussage 6: \(I\left( x \right) = \dfrac{{{I_0}}}{x}\)
Aufgabenstellung:
Welche der obenstehenden Gleichungen beschreibt die Lichtintensität I in Abhängigkeit von der Eindringtiefe x (in cm)? Kreuzen Sie die zutreffende Gleichung an!
Aufgabe 1275
AHS - 1_275 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Insektenvermehrung
Eine Insektenanzahl vermehrt sich wöchentlich um 25 %. Ein Forscher behauptet, dass sich die Insektenanzahl alle 4 Wochen verdoppelt.
Aufgabenstellung:
Beurteilen Sie, ob diese Behauptung richtig oder falsch ist, und begründen Sie Ihre Antwort rechnerisch!
Aufgabe 1279
AHS - 1_279 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zerfallsprozess
Die Population P einer vom Aussterben bedrohten Tierart sinkt jedes Jahr um ein Drittel der Population des vorangegangenen Jahres. P0 gibt die Anzahl der ursprünglich vorhandenen Tiere an.
- Aussage 1: \(P\left( t \right) = {P_0} \cdot {\left( {\dfrac{1}{3}} \right)^t}\)
- Aussage 2: \(P\left( t \right) = {P_0} \cdot {\left( {\dfrac{2}{3}} \right)^t}\)
- Aussage 3: \(P\left( t \right) = {P_0} \cdot \left( {1 - \dfrac{1}{3} \cdot t} \right)\)
- Aussage 4: \(P\left( t \right) = \dfrac{{{P_0}}}{{3 \cdot t}}\)
- Aussage 5: \(P\left( t \right) = \dfrac{{2 \cdot {P_0}}}{3} \cdot t\)
- Aussage 6: \(P\left( t \right) = {\left( {{P_0} - \dfrac{1}{3}} \right)^t}\)
Aufgabenstellung
Welche der obenstehend angeführten Gleichungen beschreibt die Population P in Abhängigkeit von der Anzahl der abgelaufenen Jahre t? Kreuzen Sie die zutreffende Gleichung an!
Aufgabe 1278
AHS - 1_278 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wachstumsprozesse
Zur Beschreibung von Wachstumsvorgängen aus der Natur bzw. dem Alltag können oft Exponentialfunktionen herangezogen werden.
- Aussage 1: Ein Sparbuch hat eine Laufzeit von 6 Monaten. Eine Spareinlage wird mit 1,5 % effektiven Zinsen pro Jahr, also 0,125 % pro Monat, verzinst. Diese werden ihm allerdings erst nach dem Ende des Veranlagungszeitraums gutgeschrieben. [Modell für das Kapitalwachstum in diesem halben Jahr]
- Aussage 2: Festverzinsliche Anleihen garantieren einen fixen Ertrag von effektiv 6 % pro Jahr. Allerdings muss der angelegte Betrag 5 Jahre gebunden bleiben. [Modell für das Kapitalwachstum über diese 5 Jahre]
- Aussage 3: Haare wachsen pro Tag ca. 1/3 mm. [Modell für das Haarwachstum]
- Aussage 4: Milchsäurebakterien vermehren sich an heißen Tagen abhängig von der Außentemperatur um 5 % pro Stunde. [Modell für die Vermehrung der Milchsäurebakterien]
- Aussage 5: Die Sonneneinstrahlung auf einen Körper wird stärker, je höher die Sonne über den Horizont steigt. [Modell für die Steigerung der Sonneneinstrahlung abhängig vom Winkel des Sonneneinfalls (zur Horizontalen gemessen)]
Aufgabenstellung
Welche der nachstehend angeführten Fallbeispiele werden am besten durch eine Exponentialfunktion modelliert? Kreuzen Sie die beiden zutreffenden Beispiele an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1277
AHS - 1_277 & Lehrstoff: FA 5.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Viruserkrankung
Eine Viruserkrankung breitet sich sehr schnell aus. Die Anzahl der Infizierten verdoppelt sich alle vier Tage.
Aufgabenstellung
Geben Sie an, durch welchen Funktionstyp ein derartiges Wachstum beschrieben werden kann, und begründen Sie Ihre Antwort!
Aufgabe 1889
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bevölkerungszahl
Es wurde erhoben, wie sich die Bevölkerungszahl in verschiedenen Städten in den vergangenen fünf Jahren verändert hat. Zwei der unten angeführten Situationen können als exponentielles Wachstum der jeweiligen Bevölkerungszahl beschrieben werden.
- Aussage 1: Die Bevölkerungszahl nahm jedes Jahr um 1/10 der Bevölkerungszahl des jeweiligen Vorjahres zu.
- Aussage 2: Die Bevölkerungszahl hat im ersten Jahr um 10 000, im zweiten um 20 000, im dritten um 30 000, im vierten um 40 000 und im letzten Jahr um 50 000 zugenommen.
- Aussage 3: Die Bevölkerungszahl war jedes Jahr um 5 % größer als im jeweiligen Vorjahr.
- Aussage 4: Die Bevölkerungszahl war jedes Jahr um 20 000 größer als im jeweiligen Vorjahr.
- Aussage 5: Die Bevölkerungszahl war in den ersten zwei Jahren jedes Jahr um 5 % größer als im jeweiligen Vorjahr, dann jedes Jahr um 15 % größer als im jeweiligen Vorjahr.
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie die beiden Situationen an, die jeweils mithilfe einer Exponentialfunktion angemessen beschrieben werden können.
[2 aus 5]
[0 / 1 P.]