Bogenlänge einer ebenen Kurve
Hier findest du folgende Inhalte
Formeln
Bestimmtes Integral - Bogenlänge
Das bestimmte Integral ermöglicht es, die Bogenlänge von einem Graphen zu berechnen, der durch eine Funktionsgleichung gegeben ist.
Bestimmtes Integral - Bogenlänge einer ebenen Kurve
Es sei f(x) eine im Intervall [a,b] differenzierbare, also eine stetige Funktion. Dann ist s Bogenlänge der ebenen Kurve. Eine Kurve heißt rektifizierbar, wenn sie eine endliche Bogenlänge s hat.
\(s = \int\limits_a^b {\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} \,\,dx}\)
Linearer Mittelwert m einer Funktion f im Intervall [a; b]
Neben der Bogenlänge der Funktion f(x) im Intervall [a; b] kann man sich auch für den mittleren Abstand des Bogens von der x-Achse innerhalb dieses Intervalls interessieren. Ein Beispiel wäre die mittlere Flughöhe eines Balls beim Schuss vom Elfmeterpunkt in Richtung vom Tor.
\(m = \dfrac{1}{{b - a}} \cdot \int\limits_a^b {f\left( x \right)} \,\,dx\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 4400
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bitterfelder Bogen - Aufgabe B_477
Der Bitterfelder Bogen ist eine Stahlkonstruktion, die aus mehreren Bögen besteht. Ein aus Rampen bestehender Fußweg führt innerhalb der Bögen zu einer Aussichtsplattform.
Teil b
Der Verlauf des Bogens kann näherungsweise durch die Graphen der Funktionen f und g dargestellt werden. Die Graphen der beiden Funktionen sind zueinander symmetrisch bezüglich der senkrechten Achse. (Siehe nachstehende Abbildung.)
Es gilt:
\(f\left( x \right) = 30 \cdot \left( {1 - {e^{\dfrac{{x - 35}}{{13}}}}} \right){\text{ mit }}0 \leqslant x \leqslant 35\)
In einer Höhe von 21 m befindet sich die Aussichtsplattform.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Lange PQ.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Schnittwinkel α der Graphen der Funktionen f und g.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie das Ergebnis des nachstehenden Ausdrucks im gegebenen Sachzusammenhang.
\(2 \cdot \int\limits_0^{35} {\sqrt {1 + {{\left( { - \dfrac{{30}}{{13}} \cdot {e^{\dfrac{{x - 35}}{{13}}}}} \right)}^2}} } \,\,dx = 94,57\)
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4429
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewächshäuser - Aufgabe B_505
Teil a
Auf der Insel Mainau steht ein besonderes Gewächshaus. Die nachstehende Abbildung zeigt die Vorderseite des Gewächshauses in einem Koordinatensystem. Die Vorderseite ist dabei symmetrisch zur y-Achse.
Der Graph der Funktion g ergibt sich durch Verschiebung des Graphen der Funktion f um 7,5 m nach rechts und 5,8 m nach unten.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Rechenzeichen und Zahlen in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
\(g\left( x \right) = f\left( {x\fbox{}\,\,\boxed{}} \right)\,\,\boxed{}\,\,\boxed{}\)
Die Funktion f ist gegeben durch:
\(f\left( x \right) = \dfrac{{87}}{5} - \dfrac{{116}}{{1125}} \cdot {x^2}{\text{ mit }}0 \leqslant x \leqslant 7,5\)
x, f(x) |
Koordinaten in m |
An der Stelle x = 7,5 schließt die Tangente an den Graphen von f mit der horizontalen Tangente an den Graphen von g den stumpfen Winkel α ein (siehe obige Abbildung).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Winkel α.
[0 / 1 P.]
Die in der obigen Abbildung eingezeichneten Graphen der Funktionen f, g und h haben jeweils die gleiche Lange.
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Umfang der von der dargestellten Kontur (=äußere Linie eines Körpers) begrenzten Fläche.
[0 / 1 P.]
Aufgabe 4496
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Carport - Aufgabe B_522
Ein Carport soll durch verschiedene Modelle beschrieben werden.
Teil b
Im Modell B wird ein Teil des Carports durch den Kreisbogen k und den Graphen der Funktion q beschrieben (siehe nachstehende Abbildung).
Der Kreisbogen k verläuft zwischen den Punkten F und G = (1,18 | 1). Der zugehörige Kreis hat den Mittelpunkt M = (2,34 | –0,16).
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie, dass die Steigung der Tangente t an den Kreisbogen im Punkt G den Wert 1 hat.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Veranschaulichen Sie in der obigen Abbildung denjenigen Winkel α, der durch die nachstehende Formel berechnet werden kann.
\(\overrightarrow {MF} \cdot \overrightarrow {MG} = \left| {\overrightarrow {MF} } \right| \cdot \left| {\overrightarrow {MG} } \right| \cdot \cos \left( \alpha \right)\)
0 / 1 P.]
Zwischen den Punkten G und R kann die Begrenzungslinie des Carports durch den Graphen der Funktion q beschrieben werden.
\(q\left( x \right) = - 0,00078 \cdot {x^4} + 0,0312 \cdot {x^3} - 0,366 \cdot {x^2} + 1,74 \cdot x - 0,593\)
x, q(x) |
Koordinaten in m |
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Länge der in der obigen Abbildung dargestellten Begrenzungslinie q des Carports im Intervall [1,18; 6,66].
[0 / 1 P.]