Quarks
Die "gewöhnliche Materie" besteht aus 12 Fermionen. 6 davon sind die Quarks. Eigentlich sind es 3 Quarkpaare, die je eine Eigenschaft - „Flavor“ genannt - haben: Up + Down; Charm + Strange; Top + Bottom;
Hier findest du folgende Inhalte
Formeln
Zusammensetzung des Universums gemäß dem Standardmodell der Kosmologie
Gemäß dem Standardmodell der Kosmologie setzt sich das Universum aus 4 Komponenten zusammen. Lediglich über 4% der gewöhnlichen Materie haben wir physikalische Theorien, die auch einer experimentellen Überprüfung standgehalten haben.
- ca. 73% Dunkler Energie
- ca. 23% Dunkler Materie
- ca. 4% Gewöhnliche Materie
- ca. 0,3% Neutrinos
Gewöhnliche Materie im Standardmodell der Kosmologie
Wenn man heute von Materieteilchen spricht, also von den 4% alltäglicher Materie, dann meint man damit die
- 6 Leptonen: Elektron + Elektron-Neutrino, Myon + Myon-Neutrino, Tau + Tau-Neutrino
- 6 Quarks (mit den "Flavors"): Up + Down, Charm + Strange, Top + Bottom, welche die Protonen und Neutronen aufbauen
Lediglich die beiden leichtesten Quarks „up“ und „down“ und die beiden leichtesten Leptonen „Elektron“ und „Elektron-Neutrino“ sind stabil. D.h. es gibt 6+6=12 Materieteilchen, nur 4 davon sind stabil und nur 3 davon bauen die Elemente auf, aus denen unsere Welt besteht.
Unser physikalisches Wissen über die gewöhnliche Materie ist in der
- klassischen Mechanik (Gallilei, Newton) samt Elektrodynamik (Maxwell) und der Thermodynamik (Carnot)
- Allgemeinen Relativitätstheorie (Einstein)
- Quantenphysik (Planck, Heisenberg, Schrödinger, Feynman, Higgs)
zusammengefasst.
Alle Objekte die aus gewöhnlicher Materie bestehen, üben eine Anziehungskraft auf einander aus. Im Zentrum unserer Galaxie befindet sich das super massereiche Schwarze Loch Sagittarisu A, welches 4 Millionen Mal die Masse unserer Sonne hat, aber nur deren 17-fachen Durchmesser. Es wird von Sternen umkreist, die es durch seine Gravitation an sich bindet.
Dunkle Materie im Standardmodell der Kosmologie
Die beobachtbare gewöhnliche Materie, also inklusive der Schwarzen Löcher, reicht aber nicht aus, um einerseits die Geschwindigkeit zu erklären, mit welcher die Sterne um das Zentrum der Galaxien kreisen und andererseits den Gravitationslinseneffekt zu erklären.
Es wird daher eine zusätzliche - dunkle - Materie mit einer positiv wirkenden Gravitationskraft postuliert. Die dunkle Materie unterstützt dabei die Bildung von Strukturen im Universum, wie Sonnensysteme, Galaxien, Galaxienhaufen und Galaxien-Superhaufen bis hin zu den größten bekannten Strukturen im Universum, den Großen Quasargruppen mit einer Ausdehnung von 4 Milliarden Lichtjahren, zwischen denen sich große Leerräume erstrecken.
Die Dunkle Materie stammt von Teilchen mit Masse, setzt sich aber nicht aus Teilchen der gewöhnlichen Materie des Standardmodells der Teilchenphysik zusammen.
Die aussichtsreichsten Kandidaten sind die im supersymmetrischen Standardmodell postulierten „leichten Superpartner“, deren Masse bei 100 Protonenmassen liegen dürfte. Ihre Masse stammt aus Mechanismen jenseits des Higgs-Mechanismus. D.h. es handelt sich hier nicht um Schwarze Löcher oder um ausgebrannte Sonnen, die erkaltet sind.
Die Dunkle Materie, wäre neben den 6 Leptonen und den 6 Quarks eine dritte Materieteilchenart. Auf ihre Existenz schließt man auf Grund der Wirkung ihrer Gravitation auf sichtbare Himmelsobjekte. Sie muss aus Materieteilchen bestehen, da sie Klumpen in der Größe von Galaxien bildet.
Dunkle Energie im Standardmodell der Kosmologie
Messungen der Rotverschiebung von Galaxien haben gezeigt, dass die Geschwindigkeit mit der sich das Universum ausdehnt, nicht wie erwartet, zufolge der Wirkung der Gravitation abnimmt, sondern im Gegenteil zunimmt, als würde zwischen den Strukturen (Galaxien) eine Anti-Gravitation wirken.
Die dunkle Energie stellt ein verteiltes Energiefeld dar, welches auf Grund einer negativ wirkenden Gravitationskraft die Expansion vom Universum beschleunigt.
Die dunkle Energie scheint strukturlos, gleichmäßig im Raum verteilt und zeitlich konstant zu sein. D.h.: Sie besteht aus keinen Teilchen, die sich etwa zu Galaxien zusammenklumpen könnten. Sie könnte, ähnlich dem Higgs Feld ein skalares Feld sein, das zur inflationären Ausdehnung des Universums beigetragen hat, und im Unterschied zum Higgs-Feld zwischenzeitlich stark ausgedünnt ist. Ein solches Feld wird „Quintessenz“ genannt.
Das wichtigste Indiz für ihre Existenz ist die Tatsache, dass sich die Expansion des Universums, nicht wie erwartet unter der Wirkung der Gravitation verlangsamt, sonder im Gegenteil, beschleunigt.
Während die physikalische Natur der dunklen Energie unklar ist, hat sie bereits Einstein in seiner ART (1915) als „Lambda-Term oder kosmologische Konstante“ eingeführt.
Ein negatives Lambda verstärkt die Gravitation, ein positives Lambda wirkt in Form einer „Anti-Gravitation“, ebenso wie die dunkle Energie.
Neutrinos im Standardmodell der Kosmologie
Neutrinos sind elektrisch neutrale Teilchen, die eine sehr kleine, von null verschiedene, Ruhemasse besitzen.
1930 postulierte sie der Physiker Pauli, um den Energie- und Drehimpulserhaltungssatz im Beta-Zerfall aufrecht erhalten zu können. Neutrinos galten ursprünglich als masselos. 1967 gelang im Davis-Experiment (Nobelpreis 2002) der Nachweis der Existenz von Elektronneutrinos. Seit den 1990er belegten Experimente, dass Neutrinos eine Masse haben (Nobelpreis 2015), wobei die Neutrinomasse weniger als ein Millionstel der nächstgrößeren Masse, der des Elektrons, entspricht. Die Neutrinos sind somit die leichtesten Teilchen im Standardmodell. 2022 geht man von einer Masse von unter 0,8 Elektronenvolt aus. Auch die Neutrinomasse erklärt sich aus dem Higgs-Mechanismus, da auch sie den schwachen Isospin als Ladung tragen. Neutrinos sind die bei weitem häufigsten massetragenden Teilchen im Universum. Alleine von unserer Sonne stammend, durchdringen ca. 70 Milliarden Neutrinos pro Sekunde die Fläche von 1 cm2.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Elementarteilchen bzw. Fundamentalteilchen
Elementarteilchen sind im Standardmodell der Teilchenphysik die kleinsten bekannten Bauteile der Materie. Sie haben keine Ausdehnung, sind also punktförmig bzw. Null-dimensional. In der Stringtheorie werden sie durch „Strings“ ersetzt, die man sich als eindimensionale vibrierende Objekte vorstellen kann.
Die sogenannte „gewöhnliche Materie“ besteht aus 2 Teilchenarten
- 12 materie-bildende Fermionen
- 7(11) Austauschteilchen, den Bosonen
D.h. jedes Elementarteilchen ist entweder ein Fermion, dann hat es den Spin 1/2 oder ein Boson, dann hat es einen ganzzahligen Spin (0, 1 oder 2).
12 Fermionen
Die "gewöhnliche Materie" besteht neben den Bosonen noch aus 12 Fermionen. Sie alle haben einen halbzahligen Spin, das ist der quantisierte Eigendrehimpuls, einer der sogenannten Quantenzustände. Fermionen unterliegen dem paulischen Ausschlussprinzip, demzufolge zwei Fermionen am gleichen Ort, also bei sich überlagernden Wellenfunktionen, nicht den identen Quantenzustand annehmen können.
- 6 Leptonen
- 6 Quarks
Lediglich die beiden leichtesten Leptonen „Elektron“ und „Elektron-Neutrino“ und die beiden leichtesten Quarks „up“ und „down“ sind stabil. D.h. es gibt 6+6=12 Materieteilchen, nur 4 davon sind stabil!
6 Leptonen
Die "gewöhnliche Materie" besteht aus 12 Fermionen. 6 davon sind die Leptonen. Sie sind einzelne, nicht weiter zerlegbare Elementarteilchen.
- Elektron + Elektron-Neutrino,
- Myon + Myon-Neutrino, Die Masse der Myonen ist ca. 200 mal so groß wie die des Elektrons
- Tauon + Tauon-Neutrino), Die Masse der Tauonen ist ca. 1700 mal so groß wie die des Elektrons
- Das Elektron, Myon, Tauon und die Neutrinos unterliegen vor allem der schwachen Wechselwirkung, die für ihren Zerfall verantwortlich ist und der Gravitation, da sie massebehaftet sind. Sie unterliegen aber nicht der starken Wechselwirkung.
- Der elektromagnetischen Wechselwirkung unterliegen das Elektron, Myon und Tauon, da sie geladen sind, nicht jedoch die ungeladenen Neutrinos.
6 Quarks
Die "gewöhnliche Materie" besteht aus 12 Fermionen. 6 davon sind die Quarks. Eigentlich sind es 3 Quarkpaare, die je eine Eigenschaft - „Flavor“ genannt - haben:
- Up + Down;
- Charm + Strange;
- Top + Bottom;
- Quarks tragen die Ladung der starken Wechselwirkung, die sogenannte Farbladung („rot“, „grün“, „blau“) und Bruchteile der elektrischen Elementarladung (2/3) e oder (1/3) e. Sie sind in den Hadronen so kombiniert, dass diese nach außen eine ganzzahlige elektrische Ladung tragen.
- Quarks unterliegen vor allem der starken Wechselwirkung. Sie können aber zufolge der schwachen Wechselwirkung in andere Quarks zerfallen. Quarks unterliegen der elektromagnetischen Wechselwirkung sowie der Gravitation, da sie massebehaftet sind. Somit unterliegen Quarks allen 4. Wechselwirkung.
Hadronen aus 2, 3 oder 4 Quarks
Eine Zusammensetzung von mehreren Quarks nennt man Hadron.
Die 6 Quarks können nicht einzeln existieren, sondern nur in Zusammensetzungen von mehreren (2, 3, 5) Quarks, einem Effekt den man Confinement („Gefangenschaft“) nennt. Versucht man Hadronen durch Zufuhr von hoher Energie zu trennen, entsteht spontan ein Quark-Antiquark Paar, entsprechend der Äquivalenz von Masse und Energie (E=mc2).
Hadronen sind grundsätzlich instabil,
- mit Ausnahme des Protons (bestehend aus 2 Up Quarks und 1 Down Quark), von dem noch kein Zerfall nachgewiesen ist (Einige Theorien leiten eine Halbwertszeit von 1036 Jahren her) .
- Freie Neutronen, die also nicht in einem Atomkern gebunden sind, (bestehend aus 2 Down Quarks und 1 Up Quark), zerfallen im Betazerfall innerhalb von ca. 15 Minuten in ein Proton, ein Elektron und ein Antineutrino, sowie in kinetische Energie.
Hadronen setzen sich aus 2, 3 oder 5 Quarks zusammen
- Mesonen: Hadron aus 2 Quarks
1 Quark + 1 Antiquark, ganzzahliger Spin, Farbe und Antifarbe -> farbneutral - Baryonen: Hadron aus 3 Quarks:
halbzahliger Spin, 3 verschiedene Farben-> farbneutral. Dazu gehören das Proton und das Neutron, die zusammen den Atomkern bilden. - Pentaquarks: Hadron aus 5 Quarks:
4 Quarks + 1 Antiquark, sie wurden erst 2015 entdeckt
7 (11) Bosonen (Austauschteilchen)
Die "gewöhnliche Materie" besteht neben den Fermionen noch aus 7 (11) Bosonen. Die 5 Vektorbosnen als Vermittler der schwachen, der starken und der elektromagnetischen Wechselwirkung sind nachgewiesen. Das Tensorboson der Gravitation ist noch nicht nachgewiesen. Von den 5 erwarteten Skalarbosonen, gemäß dem Higgs'schen Mechanismus, ist erst das 1. von 5 Higgsbosonen nachgewiesen
Die Bosonen vermitteln die Kräfte der 4 Wechselwirkungen und den Higgs-Mechanismus zwischen den Fermionen und den Feldern.
Die mit den Wechselwirkungen verbundenen Kräfte werden nicht „sofort“ übertragen, sondern unterliegen auch den Aussagen der Relativitätstheorie und werden mit Lichtgeschwindigkeit oder langsamer übertragen.
Die Bosonen werden nach ihrem Spin, der im Unterschied zu den Fermionen, ganzzahlig ist, eingeteilt in
- Spin = 0: 1 (5) Skalarboson h0 Higg-Boson(en) Das / die Higgs-Boson(en) hat / haben als Skalarboson(en) den Spin= 0, also keinen Eigendrehimpuls.
- Spin = 1: 1+3+1=5 Vektor oder Eich-Bosonen
- Gluon - 8 Träger der starken Wechselwirkung - Eichgruppe SU(3)
- W+, W- und Z0 Bosonen - 3 Träger der schwachen Wechselwirkung - Eichgruppe SU(2)
- Photon - 1 Träger der elektromagnetischen Wechselwirkung - Eichgruppe U(1)
- Spin = 2: 1 Tensorboson (hypothetische Graviton)
Aufbau des Atoms
Jedes Atom besteht aus einem Atomkern und einer Atomhülle. Die Nuklide (p, n) des Kerns bestehen aus je 3 elementaren und stabilen u und d Quarks, das Elektron der Hülle ist ebenfalls elementar und stabil. Außerhalb des Atoms gibt es nur noch ein 4-tes elementares und stabiles Teilchen, das Elektron-Neutrino.
Abmessungen im Atom
Ein Atom ist solange elektrisch neutral, solange es aus gleich vielen Protonen im Kern wie Elektronen in der Hülle besteht. Die elektrische Kraft bindet die negativ geladenen Elektronen an den positiv geladenen Atomkern. Die Eigenschaften der Atomhülle bestimmen die chemischen Eigenschaften eines Elements. Die starke Kernkraft klebt die Quarks in den Hadronen zusammen und überwindet die abstossende elektromagnetische Kraft zwischen den positiv geladenen Protonen im Kern. Das Atom besteht im Wesentlichen aus "Nichts", denn der Durchmesser vom "soliden" Atomkern betragt nur ein - hunderttausendstel vom Durchmesser der Atomhülle, in der sich sonst nur noch die Elektronen befinden.
Durchmesser von Quarks | unklar, aber < 10-18 m |
Durchmesser des Atomkerns | 10-15 m |
Durchmesser der Atomhülle | 10-10 m |
Atomare Masseneinheit
Die atomare Masseneinheit u ist definiert als 1/12 der Massen des Kohlenstoff Isotops C-12. Sie dient dazu anzugeben, um das wieviel fache die Masse des betrachteten Atoms schwerer ist, als 1/12 der Masse von C-12.
\(u = \dfrac{{{}^{12}C}}{{12}} = 1,66 \cdot {10^{ - 27}}kg\)
Elektromagnetische Wechselwirkung
Quantenfeld | Elektromagnetisches Feld |
Austauschteilchen - Quant | masselose Photon (trägt selbst keine elektrische Ladung) |
Ladung | Elektrische Ladung e-, e+ |
Spin - Eigendrehimpuls des Quants | s=1 - Vektorboson |
Reichweite | Unendlich, aber leicht abschirmbar |
Masse | m=0 |
Relative Stärke (im Vergleich zur starken WW) | 10-2 |
wirkt auf | Quarks, geladene Leptonen (ohne Neutrinos) und W+, W- |
Kraft | Magnetismus, Reibung, zuständig für die Bindung von Atomen zu Molekülen |
Theorie | Elektroschwache Theorie Maxwell-Gleichungen, Quantenelektrodynamik, |
Schwache Wechselwirkung
Quantenfeld | Schwaches Kernfeld |
Austauschteilchen - Quant | W+, W- und Z0massetragende Bosonen (tragen selbst auch den schwachen Isospin) |
Ladung | Schwacher Isospin (up, down) |
Spin - Eigendrehimpuls des Quants | s=1 - Vektorboson |
Reichweite | < 10-18 m |
Masse | m=80/80/91 GeV/c2 |
Relative Stärke (im Vergleich zur starken WW) | 10-15 |
wirkt auf | Quarks, Leptonen Neutrinos sowie auf W+, W- und Z0 und Higgs Bosonen |
Kraft | Kann keine „gebundenen“ Zustände erzeugen, sondern führt zum radioaktivem Betazerfall. Fusioniert zwei Wasserstoffprotonen im Schnitt nach 14.109 Jahre (=Lebensdauer der Sonne) zu einem Deuteriumkern |
Theorie | Elektroschwache Theorie |
Die Bezeichnung „schwache“ Wechselwirkung sollte eigentlich „relativ seltene“ Wechselwirkung heißen. Da sich dabei die schwach wechselwirkenden Teilchen sehr nahe kommen müssen, kommt es nur sehr selten zum Beta Zerfall und damit zum Zerfall von gewöhnlicher Materie.
\(\eqalign{ & {}_0^1n \to {}_1^1p + {e^ - } + {\overline \nu _e} \cr & {}_1^1p \to {}_0^1n + {e^ + } + {\overline \nu _e} \cr} \)
Die schwache Wechselwirkung ist für den Beta Zerfall von Neutronen verantwortlich, bei dem ein Neutron in ein Proton und ein Elektron zerfällt.
Da das Neutron aus 2 Stk. d-Quarks und 1 Stk u-Quark besteht und das resultierende Proton aus 1 Stk d-Quark und 2 Stk u-Quarks besteht, muss sich ein d-Quark in ein u-Quark umwandeln. D.h. die schwache Wechselwirkung ist in der Lage die Natur der Quarks zu verändern. Die schwache Wechselwirkung hat Einfluss auf die elektrischen Eigenschaften eines Teilchens, da sie deren elektrische Ladung verändern kann. Daher sind die schwache und die elektromagnetische Wechselwirkung nicht unabhängig voneinander und wurden 1964 zur „elektroschwachen Wechselwirkung“ zusammengefasst.
W+ und W- Bosonen
Die schwache Wechselwirkung wird durch den Austausch von W Bosonen, die den schwachen Isospin als Ladung tragen bewirkt und durch die SU(2) genannte Eichgruppe beschrieben.
Das W- Boson ist das Antiteilchen vom W+ Boson. Der schwache Isospin kann nur 2 Zustände annehmen: „Up“ und „Down“. Die Emission oder Absorption eines W-Bosons ändert den Isospin des Teilchens. Die W und Z Bosonen sind die einzigen Austauschteilchen die Masse besitzen. Der Grund dafür ist, dass die Ladung des Higgs-Feldes ebenfalls der schwache Isospin ist, genauso wie für die schwache Wechselwirkung.
Z0 Bosonen
Z Bosonen sind ebenso wie die beiden W Bosonen Träger der schwachen Wechselwirkung. Sie haben Spin 1. Die Emission oder die Absorption von Z0 Bosonen ändert die Natur eines Teilchens nicht, Neutrinos können aber mit Hilfe der Z-Bosonen mit einander wechselwirken. Da Neutrinos elektrisch neutral sind, können sie nicht elektromagnetisch bzw. über Photonen mit einander wechselwirken, sondern nur über das elektrisch neutrale Z-Boson. Z-Bosonen sind sehr schwer, haben daher nur eine kurze Lebensdauer von 3*10-25 Sekunden und können in dieser kurzen Zeit nur sehr kleine Entferungen zurücklegen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Starke Wechselwirkung
Quantenfeld | Starkes Kernfeld |
Austauschteilchen Quant | 8 masselose Gluonen (tragen selbst auch Farbladung) |
Ladung | Farbladung (rot, grün, blau) |
Spin Eigendrehimpuls des Quants | s=1 - Vektorboson |
Reichweite | 10-15 m |
Masse | m=0 |
Relative Stärke (im Vergleich zur starken WW) | 1 |
wirkt auf | Quarks und Gluonen |
Kraft |
Klebt die Quarks in den Hadronen zusammen indem sie die abstoßende elektromagnetische Kraft zwischen den positiv geladenen Protonen überwindet. Wirkt über das eigene Proton hinaus auf die Quarks benachbarter Protonen. |
Theorie | Quantenchromodynamik |
Starke Wechselwirkung
Die starke Wechselwirkung ermöglicht die Bildung von stabilen Atomkernen indem sie für die Anziehungskraft zwischen den Quarks, aus denen die Protonen und die Neutronen bestehen, verantwortlich ist.
- Solange sich die Nukleonen zwischen 0,5 und 3 Atomkerndurchmessern befinden wirkt die starke Wechselwirkung anziehend , was das auseinanderfliegen der Protonen zufolge der abstoßend wirkenden Coulombkraft verhindert.
- Jenseits von 3 Atomkerndurchmessern wirkt die starke Wechselwirkung nicht mehr.
- Unterhalb von 0,5 Atomdurchmessern wirkt die starke Wechselwirkung hingegen abstoßend, was den Kollaps der Atomkerne verhindert.
Die starke Wechselwirkung wirkt zwischen Protonen, zwischen Protonen und Neutronen sowie zwischen Neutronen auf Grund der annähernd vergleichbaren Massen weitgehend identisch und zwar immer anziehend und ist bei Abständen des Atomkerns ca. 35 mal stärker als die elektrische Abstoßung. Bei zu schweren Kernen, die also schon zu viele sich abstoßende Protonen besitzen, kann die starke Wechselwirkung die Coulomb‘sche Abstoßung nicht mehr kompensieren, die Kerne werden instabil und zerfallen in leichtere aber stabile Kerne.
Gluonen
Die starke Wechselwirkung wird durch den Austausch von masselosen Gluonen, die selbst eine der 8 Farbladungen tragen, bewirkt und durch eine SU(3) genannte Eichgruppe beschrieben. Die Emission oder Absorption eines Gluons ändert die Farbe des Quarks.
Higgs Mechanismus
(Nur) Teilchen die den schwachen Isospin als Ladung tragen, koppeln neben der schwachen Wechselwirkung noch an ein weiteres Feld - Higgs Feld - genannt an. Sie tun dies durch den Austausch von Higgs Bosonen.
Quantenfeld | Higgs-Feld |
Austauschteilchen Quant | massetragendes Higgs Boson (trägt selbst den schwachen Isospin) |
Ladung | Schwacher Isospin (up, down) |
Spin (Eigendrehimpuls des Quants) | s=0 - skalares Boson |
Reichweite | Im ganzen Universum, dünnt nicht aus, nicht abschirmbar |
Masse | m=125 GeV/c2 |
Relative Stärke (im Vergleich zur starken WW) | |
wirkt auf | Quarks und Leptonen sowie W, Z und Higgs Bosonen |
Kraft | "erzeugt" Ruhemasse - "bremst" Elementarteilchen auf v < c0 |
Theorie | Elektroschwache Theorie |