Starke Wechselwirkung
Hier findest du folgende Inhalte
Formeln
Fundamentale Wechselwirkungen
Ursprünglich waren die elektrische und die magnetische Wechselwirkung getrennt, doch mit den 4 Maxwell Gleichungen gelang es diese beiden Wechselwirkungen zur elektromagnetischen Wechselwirkung zusammen zu fassen.
Heute beschreiben die 4 fundamentalen Wechselwirkungen, wie physikalische Objekte einander beeinflussen können. Bei den 4 Wechselwirkungen handelt es sich um die Gravitation, die starke und die schwache Wechselwirkung sowie um die elektromagnetische Wechselwirkung.
Zwischenzeitlich ist es im Rahmen des Standardmodells der Elementarteichen gelungen, die schwache und die elektromagnetische Wechselwirkung zur elektroschwachen Wechselwirkung zusammen zu fassen, sodass man eigentlich aktuell nur mehr von 3 fundamentalen Wechselwirkungen sprechen müsste.
Eine Sonderstellung hat der Higgs Mechanismus. Er hat zwar so wie die 4 Wechselwirkungen auch ein eigenes Quant als Austauschteilchen, nämlich das Higgs Boson und er hat auch ein eigenes Feld, nämlich das Higgs-Feld, da er aber durch die elektroschwache Theorie beschrieben wird, spricht man hier von einem Mechanismus und nicht von einer 5. Wechselwirkung.
Heute arbeiten die Wissenschaftler an der Grand Unified Theory (GUT) welche die elektroschwache mit der starken Wechselwirkung vereinheitlichen soll. Der nächste und letzte Schritt müsste auch noch die Gravitation mit der GUT verbinden, das wäre dann die sogenannte Theory of Everything (ToE), eine Theorie der Quantengravitation. Kandidaten dafür sind die Stringtheorie und die M-Theorie.
Wichtig ist zu verstehen, dass die physikalische Vereinheitlichung dieser Wechselwirkungen an Temperaturen jenseits von 1028 K bzw. an Energien jenseits von 1016 GeV gebunden sind. Zum Vergleich, der LHC vom Cern erreicht gerade mal 1,3.104 GeV und müßte somit noch eine Billion Mal energiereicher werden, um diese Temperaturen von unmittelbar nach dem Urknall zu simulieren.
Die fundamentalen Wechselwirkungen und der Higgs-Mechanismus
Ein Feld ist eine Energieform, die den Raum erfüllt. Felder können sich mit endlicher Geschwindigkeit ausbreiten, wobei ihre Dynamik durch Feldgleichungen beschrieben wird.
Unterscheidung der 5 Felder nach ihrem Rang:
- Skalarfeld (Tensor vom Rang 0)
- Higgs Feld
- Higgs Feld
- Vektorfelder (Tensor vom Rang 1)
- Elektromagnetisches Feld
- Feld der schwachen Wechselwirkung
- Feld der starken Wechselwirkung
- Tensorfeld (Tensor vom Rang >1)
- Gravitationsfeld
Die Austauschteilchen (Quanten) der 4 fundamentalen Wechselwirkungen und vom Higgs-Mechanismus
Unterscheidung der 5 Felder nach ihrem Wirkungsradius
Makrokosmos
-
- Gravitation - Graviton (postuliert, nicht experiementell nachgewiesen)
- elektromagnetische Wechselwirkung - Photon
Mikrokosmos
-
- schwache Wechselwirkung - W+, W- und Z0 Bosonen
- starke Wechselwirkung - Gluonen
- Higgs Mechanismus - Higgs Boson
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Physik des Atomkerns
Die Kernphysik beschreibt das Verhalten der Kernteilchen, also der Protonen und der Neutronen, bwz. der Quarks, aus denen sich die Nukleonen zusammensetzen.
Aufbau des Atomkerns
Jeder Atomkern besteht aus Protonen p und Neutronen n, die man zusammen als Baryonen bezeichnet. Baryonen haben eine innere Struktur (d.h. sie bestehen jeweils aus 3 Quarks, erst diese sind fundamental). Protonen und Neutronen sind daher - im Unterschied zu den Elektronen der Hülle - keine Elementarteilchen.
p | \({{m_0} = 1836 \cdot {m_e}}\) | 1,007 276 466 58 u |
n | \({{m_0} = 1839 \cdot {m_e}}\) | 1,008 664 915 95 u |
e | 0,000 548 579 90 u |
u = Atomare Masseneinheit
Nukleonenzahl oder Massenzahl A
Unter der Nukleonenzahl A, auch Massenzahl genannt, versteht man die Summe der Protonen Z und der Neutronen N im Atomkern.
A = Z + N
Die Bindungsenergie pro Nukleon hat ihr Maximum bei A=56. Das entspricht dem Element Eisen, welches 30 Neutronen und 26 Protonen hat.
Protonenzahl oder Ordnungszahl Z
Ein Element hat immer eine fixe Anzahl Z an Protonen, kann aber unterschiedlich viele Neutronen N - und somit unterschiedliche Massenzahlen A=Z+N haben - man spricht dann von Isotopen.
\({}_Z^AElement = Element\)
Massendefekt
Die Masse eines Atomkerns ist um den Massendefekt geringer, als die Summe der Masse seiner Protonen und Neutronen, da zu deren Bindung im Kern eine Bindungsenergie erforderlich ist. Die entsprechende Wechselwirkung ist die starke Wechselwirkung, die eine Reichweite von ca. 3.10-15 m hat..
\(\Delta m = \left( {Z \cdot {m_p} + N \cdot {m_n}} \right) - {m_{Kern}}\)
Fusion von Atomkernen
Bei der Fusion von Atomkernen die zusammen eine kleinere Massenzahl als Eisen (bzw. Nickel-62) haben, wird Bindungsenergie frei, es handelt sich also um einen exothermen Prozess. Bei Verbindung zu schwereren Kernen müsste man Energie aufwenden. Das ist der Grund, warum der Fusionsprozess im Inneren von Sonnen, der sogenannten Nuklearsynthese, von Wasserstoff über Deuterium, Helium, Lithium, Beryllium, Kohlenstoff und Sauerstoff bis zum Eisen bzw. Nickel verläuft. Schwerere Elemente (z.B. Gold) werden erst im kurzen Augenblick der Explosion von Sonnen gebildet, bei denen die Hälfte der Masse ins Universum geschleudert wird, während die andere Hälfte der Sonnenmasse kollabiert.
Kernbindungsenergie
Die Kernbindungsenergie ist jene Energie die frei wird, wenn sich Z freie Protonen und N freie Neutronen zu einem Kern verbinden.
\({E_B} = \Delta m \cdot {c^2} = \left[ {\left( {Z \cdot {m_p} + N \cdot {m_n}} \right) - {m_{Kern}}} \right] \cdot {c^2}\)
Bei der Kernfusion verbinden sich zwei leichte Atomkerne zu einem schwereren Atomkern. Wenn 2 leichte Atomkerne zu einem schwereren Atomkern unter extremen Druck und unter extremer Temperatur (im Inneren der Sonne, im Fusionsreaktor) verschmelzen wird die Kernbindungsenergie frei. Dieser exotherme Prozess hat bei den Elementen Eisen bzw. Nickel sein Ende. D.h. schwerere Elemente (wie Gold) werden in Sonnen nicht "gebrannt". Sie entstehen erst, wenn die Sonne explodiert.
Ein Beispiel: 1 Deuteriumkern und 1 Tritiumkern verschmelzen zu 1 Heliumkern und 1 freien Neutron unter Freisetzung von 3,5+14,1 MeV Energie.
\({}^2H + {}^3H \to {}^4He + 3,5\,\,MeV + n + 14,1\,\,MeV\)
Fission von Atomkernen
Bei der Fission (Spaltung) von Atomkernen, wird ab einer Massenzahl von über 120 Bindungsenergie frei, wenn ein schwerer Kern in 2 leichtere Kerne gespaltet wird. Die Kernspaltung verläuft i.A. nicht symmetrisch, d.h. die Spaltprodukte haben unterschiedliche Massenzahl. Der Prozess der Kernspaltung wird durch Neutronenbeschuss ausgelöst, wobei das Neutron eingefangen wird. Bei der Kernspaltung entstehen aber wieder freie Neutronen, die erneut eingefangen werden können. Das Verhältniss von eingefangenen zu abgegebenen Neutronen entscheidet, ob der Prozess der Kernspaltung erlischt, konstant verläuft oder ob eine Kettenreaktion in Gang gesetzt wird. Spaltbares Uran 235U kommt im natürlichen Uran nur zu 0,72% vor, der Rest ist nicht spaltbares 238U.
- In Schwerwasser- und Graphitmoderierten Atomreaktoren kann Natururan zum Einsatz kommen.
- Für Leichtwasserreaktoren (Druck- oder Siedewasser) erfolgt eine 235U Anreicherung auf 3% .. 5%. Dieser Reaktortyp erzeugt ca. 90% der weltweiten Kernenergie.
- Für Atombomben erfolgt eine 235U Anreicherung auf über 85%.
Kernspaltungsenergie
Die bei der Kernspaltung eines schweren Atomkerns in mehrere leichte Atomkerne freigesetzte Energie entspricht der Differenz der Bindungsenergien der beteiligten Kerne.
\({}_{92}^{235}U + {}_0^1n \to {}_{36}^{89}Kr + {}_{56}^{144}Ba + 3 \cdot {}_0^1n + 210\,\,MeV\)
Starke Wechselwirkung
Quantenfeld | Starkes Kernfeld |
Austauschteilchen Quant | 8 masselose Gluonen (tragen selbst auch Farbladung) |
Ladung | Farbladung (rot, grün, blau) |
Spin Eigendrehimpuls des Quants | s=1 - Vektorboson |
Reichweite | 10-15 m |
Masse | m=0 |
Relative Stärke (im Vergleich zur starken WW) | 1 |
wirkt auf | Quarks und Gluonen |
Kraft |
Klebt die Quarks in den Hadronen zusammen indem sie die abstoßende elektromagnetische Kraft zwischen den positiv geladenen Protonen überwindet. Wirkt über das eigene Proton hinaus auf die Quarks benachbarter Protonen. |
Theorie | Quantenchromodynamik |
Starke Wechselwirkung
Die starke Wechselwirkung ermöglicht die Bildung von stabilen Atomkernen indem sie für die Anziehungskraft zwischen den Quarks, aus denen die Protonen und die Neutronen bestehen, verantwortlich ist.
- Solange sich die Nukleonen zwischen 0,5 und 3 Atomkerndurchmessern befinden wirkt die starke Wechselwirkung anziehend , was das auseinanderfliegen der Protonen zufolge der abstoßend wirkenden Coulombkraft verhindert.
- Jenseits von 3 Atomkerndurchmessern wirkt die starke Wechselwirkung nicht mehr.
- Unterhalb von 0,5 Atomdurchmessern wirkt die starke Wechselwirkung hingegen abstoßend, was den Kollaps der Atomkerne verhindert.
Die starke Wechselwirkung wirkt zwischen Protonen, zwischen Protonen und Neutronen sowie zwischen Neutronen auf Grund der annähernd vergleichbaren Massen weitgehend identisch und zwar immer anziehend und ist bei Abständen des Atomkerns ca. 35 mal stärker als die elektrische Abstoßung. Bei zu schweren Kernen, die also schon zu viele sich abstoßende Protonen besitzen, kann die starke Wechselwirkung die Coulomb‘sche Abstoßung nicht mehr kompensieren, die Kerne werden instabil und zerfallen in leichtere aber stabile Kerne.
Gluonen
Die starke Wechselwirkung wird durch den Austausch von masselosen Gluonen, die selbst eine der 8 Farbladungen tragen, bewirkt und durch eine SU(3) genannte Eichgruppe beschrieben. Die Emission oder Absorption eines Gluons ändert die Farbe des Quarks.