Schwache Wechselwirkung
Hier findest du folgende Inhalte
Formeln
Fundamentale Wechselwirkungen
Ursprünglich waren die elektrische und die magnetische Wechselwirkung getrennt, doch mit den 4 Maxwell Gleichungen gelang es diese beiden Wechselwirkungen zur elektromagnetischen Wechselwirkung zusammen zu fassen.
Heute beschreiben die 4 fundamentalen Wechselwirkungen, wie physikalische Objekte einander beeinflussen können. Bei den 4 Wechselwirkungen handelt es sich um die Gravitation, die starke und die schwache Wechselwirkung sowie um die elektromagnetische Wechselwirkung.
Zwischenzeitlich ist es im Rahmen des Standardmodells der Elementarteichen gelungen, die schwache und die elektromagnetische Wechselwirkung zur elektroschwachen Wechselwirkung zusammen zu fassen, sodass man eigentlich aktuell nur mehr von 3 fundamentalen Wechselwirkungen sprechen müsste.
Eine Sonderstellung hat der Higgs Mechanismus. Er hat zwar so wie die 4 Wechselwirkungen auch ein eigenes Quant als Austauschteilchen, nämlich das Higgs Boson und er hat auch ein eigenes Feld, nämlich das Higgs-Feld, da er aber durch die elektroschwache Theorie beschrieben wird, spricht man hier von einem Mechanismus und nicht von einer 5. Wechselwirkung.
Heute arbeiten die Wissenschaftler an der Grand Unified Theory (GUT) welche die elektroschwache mit der starken Wechselwirkung vereinheitlichen soll. Der nächste und letzte Schritt müsste auch noch die Gravitation mit der GUT verbinden, das wäre dann die sogenannte Theory of Everything (ToE), eine Theorie der Quantengravitation. Kandidaten dafür sind die Stringtheorie und die M-Theorie.
Wichtig ist zu verstehen, dass die physikalische Vereinheitlichung dieser Wechselwirkungen an Temperaturen jenseits von 1028 K bzw. an Energien jenseits von 1016 GeV gebunden sind. Zum Vergleich, der LHC vom Cern erreicht gerade mal 1,3.104 GeV und müßte somit noch eine Billion Mal energiereicher werden, um diese Temperaturen von unmittelbar nach dem Urknall zu simulieren.
Die fundamentalen Wechselwirkungen und der Higgs-Mechanismus
Ein Feld ist eine Energieform, die den Raum erfüllt. Felder können sich mit endlicher Geschwindigkeit ausbreiten, wobei ihre Dynamik durch Feldgleichungen beschrieben wird.
Unterscheidung der 5 Felder nach ihrem Rang:
- Skalarfeld (Tensor vom Rang 0)
- Higgs Feld
- Higgs Feld
- Vektorfelder (Tensor vom Rang 1)
- Elektromagnetisches Feld
- Feld der schwachen Wechselwirkung
- Feld der starken Wechselwirkung
- Tensorfeld (Tensor vom Rang >1)
- Gravitationsfeld
Die Austauschteilchen (Quanten) der 4 fundamentalen Wechselwirkungen und vom Higgs-Mechanismus
Unterscheidung der 5 Felder nach ihrem Wirkungsradius
Makrokosmos
-
- Gravitation - Graviton (postuliert, nicht experiementell nachgewiesen)
- elektromagnetische Wechselwirkung - Photon
Mikrokosmos
-
- schwache Wechselwirkung - W+, W- und Z0 Bosonen
- starke Wechselwirkung - Gluonen
- Higgs Mechanismus - Higgs Boson
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!

Eichgruppen und der Symmetriebruch
Dem Standardmodell der Elementarteilchen liegt die Symmetrische Eichtheorie zugrunde
Das Standardmodell der Elementarteilchen wird mathematisch durch eine Eichtheorie mit 3 Eichgruppen SU(3) + SU(2) + U(1) beschrieben. Die Eichgruppe SU(3) beschreibt die starke Wechselwirkung, die Eichgruppen SU(2) und U(1) beschreiben die elektroschwache Wechselwirkung, also die Vereinigung der elektromagnetischen Wechselwirkung und der schwachen Wechselwirkung.
Das Eichprinzip beschreibt die Invarianz einer Gleichung gegen Transformationen. Der Nachteil der Eichtheorie ist die Notwendigkeit masseloser Bosonen und masseloser Fermionen.
Die Eichtheorie ist eine symmetrische Theorie. Damit diese Theorie funktioniert, dürften die Elementarteilchen keine Ruhemasse haben. Haben sie Masse, tritt nämlich ein sogenannter Symmetriebruch auf. Experimente zeigten aber, dass z.B. die Fermionen und die 3 Bosonen der schwachen Wechselwirkung (W+, W-, Z0) sehr wohl Masse haben! Um dieses Problem zu lösen wurde der Higgs Mechanismus postuliert und Jahrzehnte später experimentell nachgewiesen, durch den die Fermionen und jene Bosonen die den schwachen Isospin tragen, ihre Ruhemasse beziehen.
Higgs Boson
Das Higgs-Boson entsteht, wenn das Higgs Feld von schweren, energiereichen Teilchen stark zum Schwingen angeregt wird. Das Higgs Boson stellt also den Anregungszustand vom Higgs Feld dar.
Um den Symmetriebruch der schwachen Wechselwirkung zu erklären, postulierten 1964 einige Forscher ein neues - skalares - Feld und da Higgs als erster auch das zugehörige Boson postulierte, erhielten das Feld und das Boson seinen Namen.
Das Higgs-Boson ist nicht selbst der Lieferant der Masse, sondern nur eine kurzlebige Begleiterscheinung des Higgs-Feldes, ein sogenannter angeregter Zustand des Higgs-Feldes. Das Higgs-Boson als Skalarboson hat den Spin 0, also keinen Eigendrehimpuls;
Das Higgs-Boson ist mit m=125 GeV/c2 das massereichste aller Bosonen, also schwerer als das Z-Boson mit seinen 91 GeV/c2. Auf Grund seiner Masse hat es eine extrem kurze Lebensdauer, durch die es nur extrem kurze Distanzen zurücklegen kann, ehe es zerfällt. Das Higgs Boson ist also nicht stabil. Am CERN wurden die Zerfallsprodukte des Higgs Bosons nachgewiesen, damit das Higgs Boson und damit indirekt das Higgs Feld. Die Bosonen und Fermionen erhalten ihre Ruhemasse durch die Wechselwirkung über das Higgs-Boson, mit dem allgegenwärtigen Higgs-Feld. Je stärker die Wechselwirkung, desto größer die Ruhemasse des Teilchens.
Vakuumerwartungswert eines Feldes
Der Vakuumerwartungswert ist ein Begriff aus der Quantenfeldtheorie. Der Vakuumerwartungswert eines Feldes ist zunächst einmal Null. Das bedeutet, dass im Quantenvakuum kein Feld existiert und sich das System im Zustand niedrigster Energie befindet.
\(\left\langle {{\phi _0}} \right\rangle = 0\)
Higgs Feld
(Nur) Teilchen die den schwachen Isospin als Ladung tragen, koppeln neben der schwachen Wechselwirkung noch an ein weiteres Feld - Higgs Feld - genannt an. Sie tun dies durch den Austausch von Higgs Bosonen.
Da der stabile Zustand eines Teilchens immer derjenige der niedrigsten Energie ist, setzt die Existenz eines Higgsfeldes eine Abhängigkeit der potentiellen Energie vom Higgsfeld voraus. Das ganze Universum ist von einem konstanten, durch Expansion des Universums sich nicht weiter verdünnendem Higgs-Feld erfüllt, dessen Vakuumserwartungswert ungleich Null ist, das aber nirgends verschwindet, weil so der niedrigste Energiezustand im Universum hergestellt wird. Nur Teilchen die den schwachen Isospin tragen, wechselwirken mit dem Higgsfeld, werden langsamer als Lichtgeschwindigkeit und erhalten so ihre Ruhemasse.
\(\left\langle \phi \right\rangle = \left( {\begin{array}{*{20}{c}} {{\phi ^ + }} \\ {{\phi ^0}} \end{array}} \right) = \dfrac{1}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}} 0 \\ {\sqrt {\dfrac{{{\mu ^2}}}{\lambda }} } \end{array}} \right) \ne 0\)
Das Higgs-Feld ist ein skalares Quantenfeld, seine Quanten sind die (5) Higgs-Bosonen. Das Higgs-Feld selbst und nicht die Masse der Teilchen bricht die Symmetrie der schwachen Wechselwirkung. Teilchen die nicht mit dem Higgs-Feld wechselwirken sind masselos.
Teilchen die schwache Ladung tragen, also die W und Z-Bosonen sowie das Higgs-Boson selbst, werden durch „Anregungen“ des Higgs-Feldes massiv, werden langsamer als die Lichtgeschwindigkeit und erhalten so ihre Higgs-Masse. Das Higgs-Feld ist Teil des „Vakuum Grundzustands“ des Universums geworden. Das Vakuum ist überall gleich und daher dünnt sich das Higgs-Feld trotz der Ausdehnung des Universums nicht aus, sonder hat den konstanten Vakuumerwartungswert von v=246 GeV.
Higgs Mechanismus für Träger der schwachen Wechselwirkung
Da das Higgs-Feld nur die schwache (Isospin) Ladung, nicht aber die starke (Farb-) Ladung und auch nicht die elektrische Ladung trägt, merken deren Austauschteilchen (Gluonen bzw. die Photonen) nichts vom Higgs-Feld und bleiben masselos. Das Higgs-Boson, als Anregung des Higgs-Feldes wechselwirkt also weder stark noch elektromagnetisch.
Lediglich für die 3 Träger der schwachen Wechselwirkung kann man die Ruhemassen bzw. die damit verbundene Koppelungsstärke mit einer Genauigkeit von 0,5 Promille innerhalb des Standardmodells der Elementarteilchen herleiten bzw. vorhersagen. Der Grund dafür ist, dass die Ladung des Higgs-Feldes ebenfalls der schwache Isospin ist, genauso wie für die schwache Wechselwirkung, deren Austauschteilchen eben die W+ , W- und Z0 Boson sind.
Das erklärt, woher jene Bosonen, die der schwachen Wechselwirkung unterliegen, ihre Ruhemasse erhalten.
Higgs Mechanismus für Fermionen
Im Standardmodell der Elementarteilchen gibt es keine Erklärung warum unterschiedliche Fermionen (Quarks und Leptonen) das Higgs Feld unterschiedlich stark spüren.
Yukawa Kopplungsstärke für fermionische Teilchen
Man kann die Yukawa Kopplung nicht theoretisch herleiten, sondern sie wird aus gemessenen Massen zurückgerechnet. Konkret rechnet man aus den Massen der Teilchen auf deren „Kopplungsstärke“ zurück. Umgekehrt gesagt: Die Masse der Fermionen ist proportional der Yukawa-Kopplung. Erst dieser fermionische Higgs-Mechanismus ermöglicht die Existenz von Atomen.
Schwache Wechselwirkung
Quantenfeld | Schwaches Kernfeld |
Austauschteilchen - Quant | W+, W- und Z0massetragende Bosonen (tragen selbst auch den schwachen Isospin) |
Ladung | Schwacher Isospin (up, down) |
Spin - Eigendrehimpuls des Quants | s=1 - Vektorboson |
Reichweite | < 10-18 m |
Masse | m=80/80/91 GeV/c2 |
Relative Stärke (im Vergleich zur starken WW) | 10-15 |
wirkt auf | Quarks, Leptonen Neutrinos sowie auf W+, W- und Z0 und Higgs Bosonen |
Kraft | Kann keine „gebundenen“ Zustände erzeugen, sondern führt zum radioaktivem Betazerfall. Fusioniert zwei Wasserstoffprotonen im Schnitt nach 14.109 Jahre (=Lebensdauer der Sonne) zu einem Deuteriumkern |
Theorie | Elektroschwache Theorie |
Die Bezeichnung „schwache“ Wechselwirkung sollte eigentlich „relativ seltene“ Wechselwirkung heißen. Da sich dabei die schwach wechselwirkenden Teilchen sehr nahe kommen müssen, kommt es nur sehr selten zum Beta Zerfall und damit zum Zerfall von gewöhnlicher Materie.
\(\eqalign{ & {}_0^1n \to {}_1^1p + {e^ - } + {\overline \nu _e} \cr & {}_1^1p \to {}_0^1n + {e^ + } + {\overline \nu _e} \cr} \)
Die schwache Wechselwirkung ist für den Beta Zerfall von Neutronen verantwortlich, bei dem ein Neutron in ein Proton und ein Elektron zerfällt.
Da das Neutron aus 2 Stk. d-Quarks und 1 Stk u-Quark besteht und das resultierende Proton aus 1 Stk d-Quark und 2 Stk u-Quarks besteht, muss sich ein d-Quark in ein u-Quark umwandeln. D.h. die schwache Wechselwirkung ist in der Lage die Natur der Quarks zu verändern. Die schwache Wechselwirkung hat Einfluss auf die elektrischen Eigenschaften eines Teilchens, da sie deren elektrische Ladung verändern kann. Daher sind die schwache und die elektromagnetische Wechselwirkung nicht unabhängig voneinander und wurden 1964 zur „elektroschwachen Wechselwirkung“ zusammengefasst.
W+ und W- Bosonen
Die schwache Wechselwirkung wird durch den Austausch von W Bosonen, die den schwachen Isospin als Ladung tragen bewirkt und durch die SU(2) genannte Eichgruppe beschrieben.
Das W- Boson ist das Antiteilchen vom W+ Boson. Der schwache Isospin kann nur 2 Zustände annehmen: „Up“ und „Down“. Die Emission oder Absorption eines W-Bosons ändert den Isospin des Teilchens. Die W und Z Bosonen sind die einzigen Austauschteilchen die Masse besitzen. Der Grund dafür ist, dass die Ladung des Higgs-Feldes ebenfalls der schwache Isospin ist, genauso wie für die schwache Wechselwirkung.
Z0 Bosonen
Z Bosonen sind ebenso wie die beiden W Bosonen Träger der schwachen Wechselwirkung. Sie haben Spin 1. Die Emission oder die Absorption von Z0 Bosonen ändert die Natur eines Teilchens nicht, Neutrinos können aber mit Hilfe der Z-Bosonen mit einander wechselwirken. Da Neutrinos elektrisch neutral sind, können sie nicht elektromagnetisch bzw. über Photonen mit einander wechselwirken, sondern nur über das elektrisch neutrale Z-Boson. Z-Bosonen sind sehr schwer, haben daher nur eine kurze Lebensdauer von 3*10-25 Sekunden und können in dieser kurzen Zeit nur sehr kleine Entferungen zurücklegen.