Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Sinus integrieren

Sinus integrieren

Das Integral der Sinusfunktion ist die negative Kosinusfunktion plus der Integrationskonstante

Hier findest du folgende Inhalte

1
Formeln
1
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Auffinden gängiger Stammfunktionen

    Nachfolgend jene Ableitungsfunktionen, die für die Matura bzw. das Abitur von Bedeutung sind.


    Konstante Funktion integrieren bzw. Stammfunktion einer konstanten Funktion

    Steht im Integrand nur eine Konstante, so ist deren Integral die Konstante mal derjenigen Variablen, nach der integriert wird.

    \(\eqalign{ & f\left( x \right) = k \cr & F\left( x \right) = \int {k\,\,dx = kx + c} \cr}\)


    Potenzfunktionen integrieren bzw. Stammfunktion einer Potenzfunktion

    Die n-te Potenz von x wird integriert, indem man x hoch (n+1) in den Zähler und (n+1) in den Nenner schreibt. Gilt für alle n ungleich -1.

    \(\eqalign{ & {\text{für }}n \ne - 1 \cr & f\left( x \right) = {x^n} \cr & F\left( x \right) = \int {{x^n}.dx = \dfrac{1}{{n + 1}} \cdot {x^{n + 1}}} + C \cr}\)


    1/x integrieren bzw. Stammfunktion von 1/x

    Zur Funktion 1/x lautet die Stammfunktion ln|x|+C. Die Funktion 1/x ist gleich der Potenzfunktion xn für n=-1.

    \(\eqalign{ & {\text{für }}n = - 1 \cr & f\left( x \right) = \dfrac{1}{x} \cr & F\left( x \right) = \int {\dfrac{1}{x}} .dx = \ln |x| + C \cr}\)

    Der Definitionsbereich von ln(x) ist R+, also die positiven reellen Zahlen. Indem man im Argument der Logarithmusfunktion den Betrag von x nimmt, erweitert man den Definitionsbereich der Stammfunktion auf negative x. x=0 muss man ausschließen, da der ln(0) nicht definiert ist.


    Wurzelfunktionen integrieren bzw. Stammfunktion einer Wurzelfunktion

    Bei Wurzelfunktionen bietet es sich an, den Wurzelausdruck zunächst in eine Potenzfunktion f(x) umzuwandeln und anschließend deren Stammfunktion F(x) aufzusuchen

    \(\eqalign{ & f\left( x \right) = \sqrt x = {x^{\dfrac{1}{2}}} \cr & F\left( x \right) = \int {\sqrt x } \,\,dx = \dfrac{2}{3}\sqrt {{x^3}} + C \cr}\)


    Exponentialfunktionen integrieren bzw. Stammfunktion einer Exponentialfunktion

    Bei der Exponentialfunktion zur Basis e (eulersche Zahl) handelt es sich um die einzige Funktion f(x), die mir Ihrer eigenen Stammfunktion F(x) identisch ist.

    \(\eqalign{ & f\left( x \right) = {e^x} \cr & F\left( x \right) = \int {{e^x}} \,\,dx = {e^x} + C \cr}\)


    \(\eqalign{ & f\left( x \right) = {e^{k \cdot x}} \cr & F\left( x \right) = \int {{e^{k \cdot x}}} \,\,dx = \frac{1}{k}{e^{k \cdot x}} + C \cr} \)


    Bei der Exponentialfunktion zur Basis a lautet die Stammfunkton "a hoch x dividiert durch den natürlichen Logarithmus von der Basis a"

    \(\eqalign{ & f\left( x \right) = {a^x} \cr & F\left( x \right) = \int {{a^x}} \,\,dx = \dfrac{{{a^x}}}{{\ln a}} + C \cr} \)


    Logarithmusfunktionen integrieren bzw. Stammfunktion einer Logarithmusfunktion

    Bei der Logarithmusfunktion zur Basis e (eulersche Zahl) handelt es sich um den sogenannten natürlichen Logarithmus "ln". Er hat die selben Eigenschaften wir Logarithmusfunktionen zu einer beliebigen Basis log a. Die Stammfunktion der Logarithmusfunktion lautet "x mal ln x minus x"

    \(\eqalign{ & f\left( x \right) = \ln x \cr & F\left( x \right) = \int {\ln x} \,\,dx = x \cdot \ln x - x + C \cr} \)


    \(\eqalign{ & f\left( x \right) = {}^a\log x \cr & F\left( x \right) = \int {{}^a\log x} \,\,dx = \dfrac{1}{{\ln a}}\left( {x.\ln x - x} \right) + C \cr} \)


    Winkelfunktionen integrieren bzw. Stammfunktion von Winkelfunktionen

    Winkelfunktionen, sie werden auch trigonometrische Funktionen genannt, bezeichnen Zusammenhänge zwischen einem Winkel und Verhältnissen von Seiten (der Hypotenuse, der Ankathete und der Gegenkathete) im rechtwinkeligen Dreieck. Ihrer Stammfunktionen sind Teil der Standardintegraltabellen


    Sinus integrieren

    Das Integral der Sinusfunktion ist die negative Kosinusfunktion plus der Integrationskonstante

    \(\eqalign{ & f\left( x \right) = \sin x \cr & F\left( x \right) = \int {\sin x} \,\,dx = - \cos x + C \cr}\)


    Kosinus integrieren

    Das Integral der Kosinusfunktion ist die Sinusfunktion plus der Integrationskonstante

    \(\eqalign{ & f\left( x \right) = \cos x \cr & F\left( x \right) = \int {\cos x} \,\,dx = \sin x + C \cr} \)


    Illustration als Merkhilfe für die Vorzeichen beim Differenzieren bzw. Integrieren von Sinus und Kosinus

    Dreieck d1 Dreieck d1: Polygon K, B, D Dreieck d2 Dreieck d2: Polygon C, L, M Dreieck d3 Dreieck d3: Polygon G, N, O Dreieck d4 Dreieck d4: Polygon I, P, Q Dreieck d5 Dreieck d5: Polygon S, C_1, D_1 Dreieck d6 Dreieck d6: Polygon W, E_1, F_1 Dreieck d7 Dreieck d7: Polygon A_1, G_1, H_1 Dreieck d8 Dreieck d8: Polygon U, I_1, J_1 Bogen c Bogen c: Kreisbogen(E, A, C) Bogen d Bogen d: Kreisbogen(E, J, K) Bogen e Bogen e: Kreisbogen(E, H, I) Bogen f Bogen f: Kreisbogen(E, F, G) Bogen h Bogen h: Kreisbogen(R, W, V) Bogen r Bogen r: Kreisbogen(R, S, T) Bogen s Bogen s: Kreisbogen(R, U, B_1) Bogen t Bogen t: Kreisbogen(R, A_1, Z) Strecke d_1 Strecke d_1: Strecke K, B Strecke k Strecke k: Strecke B, D Strecke b Strecke b: Strecke D, K Strecke m Strecke m: Strecke C, L Strecke c_1 Strecke c_1: Strecke L, M Strecke l Strecke l: Strecke M, C Strecke o Strecke o: Strecke G, N Strecke g Strecke g: Strecke N, O Strecke n Strecke n: Strecke O, G Strecke q Strecke q: Strecke I, P Strecke i Strecke i: Strecke P, Q Strecke p Strecke p: Strecke Q, I Strecke j Strecke j: Strecke S, C_1 Strecke s_1 Strecke s_1: Strecke C_1, D_1 Strecke a Strecke a: Strecke D_1, S Strecke f_1 Strecke f_1: Strecke W, E_1 Strecke w Strecke w: Strecke E_1, F_1 Strecke e_1 Strecke e_1: Strecke F_1, W Strecke h_1 Strecke h_1: Strecke A_1, G_1 Strecke a_1 Strecke a_1: Strecke G_1, H_1 Strecke g_1 Strecke g_1: Strecke H_1, A_1 Strecke j_1 Strecke j_1: Strecke U, I_1 Strecke u Strecke u: Strecke I_1, J_1 Strecke i_1 Strecke i_1: Strecke J_1, U sin(x) Text1 = “sin(x)” cos(x) Text2 = “cos(x)” -sin(x) Text3 = “-sin(x)” -cos(x) Text4 = “-cos(x)” Differenzieren Text5 = “Differenzieren” Integrieren Text6 = “Integrieren”


    Tangens integrieren

    Das Integral der Tangensfunktion ist der negative Logarithmus vom Betrag der Kosinusfunktion plus die Integrationskonstante.

    \(\eqalign{ & f\left( x \right) = \tan x \cr & F\left( x \right) = \int {\tan x} \,\,dx = - \ln \left| {cosx} \right| + C \cr} \)


    Kotangens integrieren

    Das Integral der Kotangensfunktion ist der positive Logarithmus vom Betrag der Sinusfunktion plus die Integrationskonstante.

    \(\eqalign{ & f\left( x \right) = \cot x \cr & F\left( x \right) = \int {\cot x} \,\,dx = \ln \left| {\sin x} \right| + C \cr} \)

    Auffinden gängiger Stammfunktionen
    Konstante integrieren
    Potenzen integrieren
    Wurzeln integrieren
    Exponentialfunktionen integrieren
    Logarithmusfunktionen integrieren
    Winkelfunktionen integrieren
    Sinus integrieren
    Kosinus integrieren
    Tangens integrieren
    Kotangens integrieren
    1/x integrieren
    Stammfunktion 1/x
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Aufgaben
    Lösungsweg

    Aufgabe 6023

    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Analysis​

    Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst


    In der Lungenfunktionsdiagnostik spielt der Begriff der Atemstromstärke eine wichtige Rolle. Im Folgenden wird die Atemstromstärke als die momentane Änderungsrate des Luftvolumens in der Lunge betrachtet, d. h. insbesondere, dass der Wert der Atemstromstärke beim Einatmen positiv ist. Für eine ruhende Testperson mit normalem Atemrhythmus wird die Atemstromstärke in Abhängigkeit von der Zeit modellhaft durch die Funktion

    \(g:t \mapsto - \dfrac{\pi }{8} \cdot \sin \left( {\dfrac{\pi }{2} \cdot t} \right)\)

    mit Definitionsmenge \({{\Bbb R}_0}^ + \)  beschrieben. Dabei ist t die seit Beobachtungsbeginn vergangene Zeit in Sekunden und g(t) die Atemstromstärke in Litern pro Sekunde. Die nachfolgende Abbildung zeigt den durch die Funktion g beschriebenen zeitlichen Verlauf der Atemstromstärke.

    Funktion g g(x) = Wenn(0 < x < 8, (-π) / 8 sin(π / 2 x)) Atemstromstärke in l/s text1 = “Atemstromstärke in l/s” t in s text2 = “t in s”

    1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20

    Berechnen Sie g(1,5)


    2. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20

    Interpretieren Sie das Vorzeichen dieses Werts im Sachzusammenhang.


    3. Teilaufgabe b) 2 BE - Bearbeitungszeit: 4:40

    Beim Atmen ändert sich das Luftvolumen in der Lunge. Geben Sie auf der Grundlage des Modells einen Zeitpunkt an, zu dem das Luftvolumen in der Lunge der Testperson minimal ist, und machen Sie Ihre Antwort mithilfe der Abbildung plausibel.


    4. Teilaufgabe c) 4 BE - Bearbeitungszeit: 9:20

    Berechnen Sie \(\int\limits_2^4 {g\left( t \right)} \,\,dt\) und deuten Sie den Wert des Integrals im Sachzusammenhang.

    (Teilergebnis: Wert des Integrals: 0,5 )


    Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson.

    5. Teilaufgabe d) 3 BE - Bearbeitungszeit: 7:00

    Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe c in einem Koordinatensystem für \(0 \leqslant t \leqslant 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.


    6. Teilaufgabe e.1) 1 BE - Bearbeitungszeit: 2:20

    Geben Sie zunächst die Atemfrequenz der Testperson an.


    Die Atemstromstärke eines jüngeren Menschen, dessen Atemfrequenz um 20% höher ist als die der bisher betrachteten Testperson, soll durch eine Sinusfunktion der Form

    \(h:t \mapsto a \cdot \sin \left( {b \cdot t} \right){\text{ mit }}t \geqslant 0{\text{ und }}\left( {b > 0} \right)\) beschrieben werden.

    7. Teilaufgabe e.2) 3 BE - Bearbeitungszeit: 7:00

    Ermitteln Sie den Wert von b.

    kostenlose Vorbereitung Mathe Abitur Bayern 2015 - Teil B - Analysis
    Zusammenhang Periodendauer, Frequenz und Wellenlänge
    Sinus integrieren
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH