Gebrochenrationale Funktionen
Formel
Gebrochenrationale Funktion
Gebrochenrationale Funktionen haben sowohl im Zähler als auch im Nenner ein Polynom.
\(f\left( x \right) = \dfrac{{p\left( x \right)}}{{q\left( x \right)}}\)
- Echt gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist kleiner als der Grad vom Nennerpolynom. Ein Beispiel hierfür sind die Hyperbeln.
- Unecht gebrochenrationale Funktion: Der Grad vom Zählerpolynom ist größer oder gleich als der Grad vom Nennerpolynom.
Hyperbel n-ten Grades
Bei Hyperbeln n-ten Grades sind die Funktionswerte f(x) zu den Potenzen der Argumente x indirekt proportional. Der Graph der Funktion ist eine Hyperbel. Man bezeichnet die Funktion auch als Reziprokfunktion. Achtung: unter "hyperbolischen" Funktionen versteht man spezielle Exponentialfunktionen.
\(\eqalign{ & f\left( x \right) = \dfrac{c}{{{x^n}}} = c \cdot {x^{ - n}} \cr & n \in {{\Bbb N}_g} \cr}\)
Hyperbeln vom Grad n, wenn n gerade ist
Graph liegt symmetrisch zur y-Achse
Hyperbeln vom Grad n, wenn n ungerade ist
Graph liegt symmetrisch zur x-Achse
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Wissenspfad
Zur aktuellen Lerneinheit empfohlenes Vorwissen
Darstellung von Funktionen | Unter einer Funktion versteht man die eindeutige Zuordnung von jedem Element x der Definitionsmenge zu genau einem Element y der Wertemenge. |
Aktuelle Lerneinheit
Gebrochenrationale Funktionen | Bei Hyperbeln n-ten Grades sind die Funktionswerte f(x) sind zu den Potenzen der Argumenten x indirekt proportional. |
Verbreitere dein Wissen zur aktuellen Lerneinheit
Wichtige Funktionswerte | Unter den Extremstellen einer Funktion versteht man deren Minimum bzw. Maximum. |
Grad einer Funktion | Der Grad einer Funktion ist gleich groß der Anzahl der Nullstellen (mit deren Vielfachheit gezählt). Der Grad entspricht dem höchsten vorkommenden Exponenten von x. |
Polynomfunktionen n-ten Grades | Ein Polynom ist die Summe von mehreren Potenzfunktionen. |
Logarithmusfunktionen | Die Logarithmusfunktion ist die Umkehrfunktion der Exponentialfunktion |
Wurzelfunktionen | Die Wurzelfunktion ist die Umkehrfunktion der Potenzfunktion für positive x |
Potenzfunktionen | Potenzfunktionen sind Funktionen bei denen x zu einer höheren als der 1. Potenz vorkommt. |
Natürliche Exponentialfunktion | Die natürliche Exponentialfunktion ist eine spezielle Exponentialfunktion, nämlich eine mit der Euler’schen Zahl e=2,718 als Basis |
Exponentialfunktion | Exponentialfunktionen sind Funktionen mit einer festen Basis a (die positiv und ungleich 1 ist) und einem variablen Exponenten x. Da die Variable x im Exponenten steht, heißt die Funktion Exponentialfunktion. c ist der Streckungsfaktor und zugleich der Anfangswert. Die Basis a ist ein Maß für die relative Zu- oder Abnahme. Bei einer Exponentialfunktion steigt der Funktionswert innerhalb von gleichbleibenden Zeitintervallen um den gleichen Prozentwert. |
Quadratische Funktion | Der Graph einer quadratischen Funktion ist eine Parabel. |
Intervallweise lineare Funktion | Bei intervallweisen linearen Funktionen handelt es sich um zusammengesetzte lineare Teil-Funktionen, die innerhalb eines definieren Intervalls (Anfangspunkt, Endpunkt) linear sind, die aber an den Intervallgrenzen Spitzen / Knicke oder Sprungstellen haben. |
Lineare Funktion | Bei linearen Funktionen kommt x nur in der 1. Potenz vor. Ihr Funktionsgraph ist eine Gerade, wobei k der Anstieg bzw. die Steigung und d der Achsenabschnitt auf der y-Achse ist. |
Nullstelle einer Funktion | Jede Lösung der Gleichung f(x)=0 ist eine Nullstelle der Funktion f(x). |
Periodische Funktion | Eine zeitlich veränderliche Funktion heißt periodisch mit der Periodendauer T, wenn die Funktion bei Verschiebung um T in sich selbst übergeführt wird
|
Gerade und ungerade Funktionen | Gerade Funktionen sind symmetrisch zur y-Achse. Spiegelt man die Funktionswerte mit positivem x um die y-Achse, so erhält man die Funktionswerte mit negativem x. Ungerade Funktionen sind symmetrisch zum Ursprung. Dreht man die Funktionswerte mit positivem x um 180° um den Ursprung, so erhält man die Funktionswerte mit negativem x. |
Bijektive, injektive und surjektive Funktionen | Umkehrbar eindeutig ist eine Funktion dann, wenn nicht nur jedem Element x der Definitionsmenge eindeutig ein Element y der Wertemenge zugeordnet wird, sondern wenn auch umgekehrt zu jedem Element y der Wertemenge genau ein Element x der Definitionsmenge gehört. |
Taylorpolynom | Das Taylorpolynom bietet die Möglichkeit eine komplizierte Funktion f(x), an einer vorgegebenen Stelle x0 durch eine Polynomfunktion zu approximieren |
Parameter von Funktionen | Parameterfunktionen enthalten in ihren Funktionsgleichungen nicht nur die abhängige y-Variable und die unabhängige x-Variable, sondern auch einen oder mehrere Parameter (a, b, c, d). Durch die Variation dieser Parameter streckt, staucht oder verschiebt man den Graph der Funktion. |
Aufgaben zu diesem Thema
Aufgabe 1262
AHS - 1_262 & Lehrstoff: FA 2.6
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Celsius - Fahrenheit
Temperaturen werden bei uns in °C (Celsius) gemessen; in einigen anderen Ländern ist die Messung in °F (Fahrenheit) üblich. Zwischen der Temperatur x in °C und der Temperatur f(x) in °F besteht folgender Zusammenhang: \(f\left( x \right) = \dfrac{9}{5} \cdot x + 32\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Die Temperatur in °C und jene in °F sind zueinander ______1_______ , da ______2_______ .
1 | |
direkt proportional | A |
indirekt proportional | B |
nicht proportional | C |
2 | |
es beispielsweise bei 320 °F genau halb so viele °C hat | I |
eine Erwärmung auf z. B. dreimal so viele °C weder bedeutet, dass die Temperatur auf dreimal so viele °F ansteigt, noch dass sie auf ein Drittel absinkt | II |
eine Zunahme um 1 °C immer eine Erwärmung um gleich viele °F bedeutet | III |
Aufgabe 4197
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 14. Jänner 2020 - Teil-A Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wandern - Aufgabe A_089
Teil c
Bei der Besteigung eines bestimmten Berges ist die Gesamtgehzeit indirekt proportional zu dem durchschnittlichen überwundenen Höhenunterschied in Metern pro Stunde (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Lesen Sie aus der obigen Abbildung ab, welcher Höhenunterschied bei dieser Besteigung insgesamt überwunden werden muss.
[1 Punkt]
Aufgabe 1268
AHS - 1_268 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer indirekten Proportionalität
Gegeben ist eine Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^z} + b{\text{ wobei }}z \in {\Bbb Z}{\text{ und }}a,b \in {\Bbb R}\)
Aufgabenstellung:
Welche Werte müssen die Parameter b und z annehmen, damit durch f ein indirekt proportionaler Zusammenhang beschrieben wird? Ermitteln Sie die Werte der Parameter b und z!
Aufgabe 1117
AHS - 1_117 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ideales Gas
Die Abhängigkeit des Volumens V vom Druck p kann durch eine Funktion beschrieben werden. Bei gleichbleibender Temperatur ist das Volumen V eines idealen Gases zum Druck p indirekt proportional. 200 cm³ eines idealen Gases stehen bei konstanter Temperatur unter einem Druck von 1 bar.
Aufgabenstellung:
Geben Sie den Term der Funktionsgleichung an und zeichnen Sie deren Graphen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1102
AHS - 1_100 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Indirekte Proportionalität
t ist indirekt proportional zu x und y².
- Aussage 1: \(t = \dfrac{z}{{3 \cdot x \cdot {y^2}}}\)
- Aussage 2: \(t = \dfrac{{x \cdot z}}{{3 \cdot {y^2}}}\)
- Aussage 3: \(t = \dfrac{{x \cdot {y^2}}}{{3 \cdot z}}\)
- Aussage 4: \(t = \dfrac{{3 \cdot z}}{{x \cdot {y^2}}}\)
- Aussage 5: \(t = x \cdot {y^2} \cdot z\)
Aufgabenstellung:
Welche der angegebenen Formeln beschreiben diese Abhängigkeiten? Kreuzen Sie die beiden zutreffenden Formeln an!
Aufgabe 1791
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Druck und Volumen eines idealen Gases
Bei gleichbleibender Temperatur sind der Druck und das Volumen eines idealen Gases zueinander indirekt proportional. Die Funktion p ordnet dem Volumen V den Druck p(V) zu (V in m3, p(V) in Pascal).
Aufgabenstellung:
Geben Sie p(V) mit V ∈ ℝ+ an, wenn bei einem Volumen von 4 m3 der Druck 50 000 Pascal beträgt.
Aufgabe 1510
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen und Funktionstypen
Im Folgenden sind sechs Funktionstypen angeführt, wobei die Parameter \(a,b \in {{\Bbb R}^ + }\) sind
A | \(f\left( x \right) = a \cdot {b^x}\) |
B | \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}}\) |
C | \(f\left( x \right) = a \cdot \dfrac{1}{{{x^2}}}\) |
D | \(f\left( x \right) = a \cdot {x^2} + b\) |
E | \(f\left( x \right) = a \cdot {x^3}\) |
F | \(f\left( x \right) = a \cdot x + b\) |
Weiters sind die Graphen von vier Funktionen dargestellt.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen 1, 2, 3 und 4 jeweils den entsprechenden Funktionstyp (aus A bis F) zu!
Aufgabe 4404
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Limnologie - Aufgabe B_478
Die Limnologie erforscht wichtige Kenngrößen von stehenden Gewässern wie etwa Temperatur oder Dichte.
Teil b
In der Limnologie wird für bestimmte Zwecke eine Funktion g verwendet:
\(g\left( x \right) = a \cdot {\left( {1 - \dfrac{x}{b}} \right)^{ - 1}}\)
a,b | positive Parameter |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie diejenige Aussage an, die auf die Funktion g nicht zutrifft.
[1 aus 5] [1 Punkt]
- Aussage 1: g(0) = a
- Aussage 2: Für 0 < x < b gilt: g(x) > a
- Aussage 3: g ist für 0 < x < b monoton steigend.
- Aussage 4: Die Funktion g hat eine Polstelle.
- Aussage 5: g(b) = 0
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen