Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Schließende Statistik

Schließende Statistik

Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen.

Hier findest du folgende Inhalte

2
Formeln
    Formeln
    Wissenspfad

    Schließende Statistik

    Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen.


    Stichprobe

    Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. Sie gilt als repräsentativ, wenn sie die typischen Merkmale der Grundgesamtheit repräsentiert.


    Wahrscheinlichkeitsrechnung

    Die Wahrscheinlichkeitsrechnung ist die Grundlage der schließenden Statistik. Sie dient dazu, die Ergebnisse von Zufallsexperimenten auszuwerten, da deren Ausgang ja nicht exakt vorhersagbar ist.

    Wahrscheinlichkeitsrechnung
    Zufallsexperiment
    Schließende Statistik
    Stichprobe
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    Bild
    Illustration Buch mit Cocktail 1050 x 450
    Startseite
    Wissenspfad
    Aufgaben

    Datenerhebung für statistische Aussagen

    Bei der Datenerhebung für statistische Aussagen hat sich folgende Terminologie etabliert:


    statistische Einheit

    Eine statistische Einheit, auch Erhebungseinheit genannt, ist ein einzelnes Element der Grundgesamtheit (z.B. Herr Max Mustermann).


    Grundgesamtheit G

    Die Grundgesamtheit G ist die Menge aller Elemente / aller Erhebungseinheiten, auf die sich eine statistische Auswertung bezieht. (z.B.: Alle Österreicher)


    Stichprobe

    Die Stichprobe ist eine repräsentative Teilmenge, die der Grundgesamtheit zufällig entnommen wurde. (z.B.: 20 zufällig ausgewählte Österreicher). Sie gilt als repräsentativ, wenn sie die typischen Merkmale der Grundgesamtheit repräsentiert.


    Stichprobenumfang n

    Der Umfang n der Stichprobe entspricht der Anzahl der erhobenen Einheiten. Der Stichprobenumfang soll so gewählt werden, dass lediglich eine möglichst kleine Teilmenge der Grundgesamtheit zu untersuchen ist, die Aussagen aber dennoch für die Grundgesamtheit repräsentativ sind.


    Merkmal X, Y

    Ein Merkmal X, Y ist jene Eigenschaft der statistischen Einheit, die untersucht werden soll (z.B.: die Körpergröße, Geschlecht). Bei einer Erhebung entspricht einem Merkmal eine Frage. (z.B.: Wie groß sind Sie?,...) Merkmale nehmen unterschiedliche Merkmalsausprägungen an.


    Nominales Merkmal

    Ein nominales Merkmal ist ein konkret benennbares qualitatives Merkmal (z.B.: Rindsschnitzel, Schweinsschnitzel, Hühnerschnitzel,...)


    Ordinales Merkmal

    Ein ordinales Merkmal entspricht einem Rang in einer Ordnung (z.B.: Schulnoten 1 .. 5)


    Metrisches Merkmal

    Ein metrisches Merkmal ist ein quantitatives Merkmal, von dem es ein Bezugsmaß und Vielfache oder Teiler gibt. (z.B.: die PS-Zahl eines Fahrzeugs: 0,1PS, 1PS, 100PS)


    Merkmalsausprägung x1, x2,..., y1, y2,...

    Eine Merkmalsausprägung x1, x2, x3 …x1, x2, x3 … ist eine ganz bestimmte Eigenschaft, die eines der Merkmale X, Y annehmen kann. Durch eine Messung wird eine Merkmalsausprägung einem Skalenwert zugeordnet. Die Merkmalsausprägung ist der gemessene Wert vom Merkmal (z.B.: X1=180 cm, Y1=männlich). Bei einer Erhebung entspricht die Merkmalsausprägung einer tatsächlich gegebenen Antwort auf die Frage nach dem Merkmal. (z.B.: Ich bin 1,80 m groß)


    Stetiges Merkmal

    Ein stetiges Merkmal liegt vor, wenn die Merkmalsausprägung jeden Wert innerhalb eines Intervalls annehmen kann (z.B.: 180,1cm, 180,15cm, 180,157cm,...)


    Diskretes Merkmal

    Ein diskretes Merkmal liegt vor, wenn die Merkmalsausprägung nur bestimmte Werte annehmen kann (z.B.: männlich, weiblich, divers)


    Nullhypothese H0

    Eine Hypothese ist eine Aussage über den Zusammenhang von mindestens zwei Merkmalen einer statistischen Beobachtung, die über das aktuelle Wissen hinaus geht und eine Vermutung beinhaltet, die oft nicht direkt belegt werden kann.

    Beim Test einer Hypothese stellt man eine Nullhypothese H0 und eine Gegenhypothese H1 dazu auf.

    Die Nullhypothese H0, ist eine Annahme in einem  Hypothesentest die besagt, dass es keinen signifikanten Zusammenhang zwischen untersuchten Variablen gibt. Sie wird aufgestellt, um zu prüfen, ob es ausreichende Beweise gibt, um sie abzulehnen um dann die Alternativhypothese, die sehr wohl einen signifikanten Zusammenhang zwischen untersuchten Variablen postuliert, zu akzeptieren.

    Dann muss ein Signifikanzniveau \(\alpha\) dafür vorgegeben sein, dass man die Nullhypothese irrtümlich verwirft, obwohl sie zutreffen ist. Ein typisches Signifikanzniveau ist 0,05 (5%). Wenn das Ergebnis vom Hypothesentest einen p-Wert kleiner als das Signifikanzniveau ergibt, lehnt man die Nullhypothese ab.

     

    Beim Hypothesentest unterscheidet man: 

    • Fehler 1. Art: Man verwirft die Nullhypothese irrtümlich, obwohl sie zutrifft und akzeptiert die (falsche) Gegenhypothese. Man schützt sich vor einem Fehler 1. Art, indem man das Signifikanzniveau absenkt.
    • Fehler 2. Art: Man hält an der Nullhypothese fest, obwohl sie nicht zutrifft. Man kann die Wahrscheinlichkeit für einen Fehler 2. Art minimieren, indem man eine ausreichend große Stichprobe verwendet.

     


    Kumulative Verteilungsfunktion

    Die kumulative Verteilungsfunktion einer binomialverteilten Zufallsvariablen gibt die Wahrscheinlichkeit an, dass die Zufallsvariable X einen Wert kleiner oder gleich einem bestimmten Wert annimmt. Die kumulative Verteilungsfunktion einer binomialverteilten Zufallsvariablen kann verwendet werden, um Wahrscheinlichkeiten von Ereignissen zu bestimmen, wie zum Beispiel die Wahrscheinlichkeit, dass die Anzahl der Erfolge kleiner oder gleich einer bestimmten Zahl ist oder, dass die Anzahl der Erfolge innerhalb eines bestimmten Intervalls liegt. Die Wahrscheinlichkeit für einen Erfolg wird als p bezeichnet und die Anzahl der Versuche als n.

    Für die kumulative Verteilungsfunktion einer nach B(n, p) binomialverteilten Zufallsvariablen gilt:
    \(F_p^n\left( k \right) = P_p^n\left( {X \le k} \right) = \sum\limits_{i = 0}^k {B\left( {n;p;i} \right) = \sum\limits_{i = 0}^k {\left( {\begin{array}{*{20}{c}} n\\ i \end{array}} \right)} } \cdot {p^i} \cdot {\left( {1 - p} \right)^{n - i}}\)

    Die Berechnung ist zeitaufwändig, weshalb man die Wahrscheinlichkeit aus einer Statistiktabelle herausliest oder mittels Software ermittelt.


    Schließende Statistik

    Die schließende Statistik ermöglicht es von einer (kleinen) Stichprobe auf die (große) Grundgesamtheit G zu schließen.


    Beschreibende Statistik

    Die beschreibende Statistik beschreibt die Grundgesamtheit einer Vollerhebung durch charakteristische Kennzahlen (Lage- und Streumaße)


    Explorative Statistik

    Die explorative Statistik beschäftigt sich mit der Analyse großer Datenmengen, wobei vor der Analyse keine Zusammenhänge zwischen den einzelnen Daten bekannt sind.

    Grundgesamtheit G
    Statistische Einheit
    Merkmal (Statistik)
    Merkmalsausprägung
    Schließende Statistik
    Beschreibende Statistik
    Skalen verschiedener Merkmalsausprägungen
    Stichprobe
    Stichprobenumfang
    diskretes Merkmal
    Nullhypothese
    nominales Merkmal
    stetiges Merkmal
    Fehler 1. Art Hypothesentest
    Fehler 2. Art Hypothesentest
    Kumulative Verteilungsfunktion einer binomial verteilten Zufallsvariablen
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Smartphone
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH