Zufallsvariable
Hier findest du folgende Inhalte
Formeln
Zufallsvariable
Eine Zufallsvariable X ist eine Funktion, die jedem Ergebnis ω vom Ergebnisraum Ω eines Zufallsexperiments eine reelle Zahl x zuordnet.
\(X:\Omega \to R;\,\,\,X:\omega \to X\left( \omega \right) = x\)
Das Ergebnis einfacher Zufallsexperimente ist etwa eine Augenzahl beim Würfeln oder "Kopf" oder "Zahl" beim Werfen einer Münze. Bei komplexeren Zufallsexperimenten ist das Ergebnis vom Experiment meist praktischer Weise eine Zahl. Der Großbuchstabe X steht dabei für die Zufallsvariable und der Kleinbuchstabe x steht für den einen, ganz konkreten Wert, den X annimmt. Man sagt auch, dass x die Zufallsvariable X "realisiert" und dass diese konkrete Realisation mit einer bestimmten Wahrscheinlichkeit eintritt.
Man unterscheidet zwischen
- diskreten Zufallsvariablen, die durch eine Wahrscheinlichkeitsfunktion beschrieben werden
- stetigen Zufallsvariablen, die durch eine Dichtefunktion beschrieben werden
Wahrscheinlichkeitsverteilung
Die Wahrscheinlichkeitsverteilung beschreibt, mit welcher Wahrscheinlichkeit die einzelnen Ergebnisse eines Zufallsexperiments auftreten. Sie lässt sich auf 2 Arten, bei gleichem Informationsgehalt aber unterschiedlicher Darstellung, beschreiben:
Wahrscheinlichkeitsverteilung für diskrete Zufallsvariablen
Für diskrete Zufallsvariablen (Bernoulli Verteilung, Binomialverteilung, Poissonverteilung, hypergeometrische Verteilung) liegt die Wahrscheinlichkeit für das Auftreten von jedem einzelnen Wert zwischen 0 und 1. Die Summe der Einzelwahrscheinlichkeiten beträgt 1 (entsprechend 100%). Die Beschreibung erfolgt durch die
- Wahrscheinlichkeitsfunktion f(x): \(f\left( x \right) = P\left( {X = x} \right)\)
- Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \sum\limits_{{x_i} \leqslant x} {f\left( {{x_i}} \right)} \)
Wahrscheinlichkeitsverteilung für stetige Zufallsvariablen
Für stetige Zufallsvariablen (Normalverteilung, Gleichverteilung, Exponentialverteilung) beträgt die Wahrscheinlichkeit für das Auftreten jedes einzelnen Werts der Zufallsvariablen exakt Null. Die Beschreibung erfolgt durch die
- Dichtefunktion f(x): \(P\left( {a < X \le b} \right) = \int\limits_a^b {f\left( x \right)} \,\,dx = F\left( b \right) - F\left( a \right)\) wobei \(\int\limits_{ - \infty }^\infty {f\left( x \right)} \,\,{\mathop{\rm dx}\nolimits} = 1\)
- Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt immer Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
- Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt immer Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
- Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \int\limits_{ - \infty }^x {f\left( t \right)\,\,dt} \)
- Auf der y-Achse der Verteilungsfunktion kann man die Wahrscheinlichkeit \(P\left( {X \le {x_1}} \right)\) ablesen, höchstens den Wert x1 zu erreichen.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.