Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Stetige Zufallsvariable

Stetige Zufallsvariable

Stetige Zufallsvariable nehmen in einem beschränkten Intervall unendlich viele Ausprägungen an. Die Wahrscheinlichkeit für das Auftreten jedes einzelnen Werts der Zufallsvariablen ist Null. Die Summe der Wahrscheinlichkeiten aller Ausprägungen beträgt 1 (entsprechend 100%). Stetige Zufallsvariablen beschreibt man durch eine Dichtefunktion und eine Verteilungsfunktion, während man diskrete Zufallsvarialben durch eine Wahrscheinlichkeitsfunktion und eine Verteilungsfunktion beschreibt.

Hier findest du folgende Inhalte

2
Formeln
    Formeln
    Wissenspfad
    Aufgaben

    Zufallsvariable

    Eine Zufallsvariable X ist eine Funktion, die jedem Ergebnis ω vom Ergebnisraum Ω eines Zufallsexperiments eine reelle Zahl x zuordnet.

    \(X:\Omega \to R;\,\,\,X:\omega \to X\left( \omega \right) = x\)

    Das Ergebnis einfacher Zufallsexperimente ist etwa eine Augenzahl beim Würfeln oder "Kopf" oder "Zahl" beim Werfen einer Münze. Bei komplexeren Zufallsexperimenten ist das Ergebnis vom Experiment meist praktischer Weise eine Zahl. Der Großbuchstabe X steht dabei für die Zufallsvariable und der Kleinbuchstabe x steht für den einen, ganz konkreten Wert, den X annimmt. Man sagt auch, dass x die Zufallsvariable X "realisiert" und dass diese konkrete Realisation mit einer bestimmten Wahrscheinlichkeit eintritt.

    Man unterscheidet zwischen

    • diskreten Zufallsvariablen, die durch eine Wahrscheinlichkeitsfunktion beschrieben werden
    • stetigen Zufallsvariablen, die durch eine Dichtefunktion beschrieben werden

    Wahrscheinlichkeitsverteilung

    Die Wahrscheinlichkeitsverteilung beschreibt, mit welcher Wahrscheinlichkeit die einzelnen Ergebnisse eines Zufallsexperiments auftreten. Sie lässt sich auf 2 Arten, bei gleichem Informationsgehalt aber unterschiedlicher Darstellung, beschreiben:


    Wahrscheinlichkeitsverteilung für diskrete Zufallsvariablen

    Für diskrete Zufallsvariablen (Bernoulli Verteilung, Binomialverteilung, Poissonverteilung, hypergeometrische Verteilung) liegt die Wahrscheinlichkeit für das Auftreten von jedem einzelnen Wert zwischen 0 und 1. Die Summe der Einzelwahrscheinlichkeiten beträgt 1 (entsprechend 100%). Die Beschreibung erfolgt durch die

    • Wahrscheinlichkeitsfunktion f(x): \(f\left( x \right) = P\left( {X = x} \right)\)
       
    • Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \sum\limits_{{x_i} \leqslant x} {f\left( {{x_i}} \right)} \)

    Wahrscheinlichkeitsverteilung für stetige Zufallsvariablen

    Für stetige Zufallsvariablen (Normalverteilung, Gleichverteilung, Exponentialverteilung) beträgt die Wahrscheinlichkeit für das Auftreten jedes einzelnen Werts der Zufallsvariablen exakt Null. Die Beschreibung erfolgt durch die

    • Dichtefunktion f(x): \(P\left( {a < X \le b} \right) = \int\limits_a^b {f\left( x \right)} \,\,dx = F\left( b \right) - F\left( a \right)\) wobei \(\int\limits_{ - \infty }^\infty {f\left( x \right)} \,\,{\mathop{\rm dx}\nolimits} = 1\)

      • Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt immer Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)
         
    • Verteilungsfunktion F(x): \(F\left( x \right) = P\left( {X \leqslant x} \right) = \int\limits_{ - \infty }^x {f\left( t \right)\,\,dt} \)
      • Auf der y-Achse der Verteilungsfunktion kann man die Wahrscheinlichkeit \(P\left( {X \le {x_1}} \right)\) ablesen, höchstens den Wert x1 zu erreichen.
    Zufallsvariable
    Zufallsexperiment
    Wahrscheinlichkeitsverteilung
    Wahrscheinlichkeit P
    Diskrete Zufallsvariable
    Stetige Zufallsvariable
    Wahrscheinlichkeitsfunktion
    Verteilungsfunktion
    Dichtefunktion
    Wahrscheinlichkeitsfunktion diskreter Zufallsvariablen
    Verteilungsfunktion diskreter Zufallsvariablen
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Wissenspfad
    Aufgaben

    Stetige Zufallsvariable

    Man spricht von einer stetigen Zufallsvariablen, wenn die Anzahl der Ergebnisse des Zufallsexperiments unendlich,also nicht abzählbar, ist. Sie wird durch eine Dichtefunktion und/oder eine Verteilungsfunktion beschrieben.

    Spezielle Verteilungen stetiger Zufallsvariabler sind

    • Rechtecksverteilung
    • Exponentialverteilung
    • Normalverteilung
    • Standardnormalverteilung

    Dichtefunktion

    Die Fläche unter der Dichtefunktion beschreibt (mittels Integralrechnung) die Wahrscheinlichkeit dafür, dass die stetige Zufallsvariable innerhalb vom Intervall [a, b] liegt. Umgekehrt bedeutet dies, dass in Intervallen in denen die Dichte (de-facto) Null ist auch (de-facto) keine Realisierungen von X liegen, während in Intervallen mit hoher Dichte auch eine große Anzahl an Realisierungen von X liegen.

    Dichtefunktion f(x): \(P\left( {a < X \le b} \right) = \int\limits_a^b {f\left( x \right)} \,\,dx = F\left( b \right) - F\left( a \right)\) , wobei die Fläche unter der Dichtefunktion normiert ist gemäß: \(\int\limits_{ - \infty }^\infty {f\left( x \right)} \,\,{\mathop{\rm dx}\nolimits} = 1\)

    Die Dichtefunktion ist für stetige Zufallsvariablen das Äquivalent zur Wahrscheinlichkeitsfunktion von diskreten Zufallsvariablen. Sie kann nur positive Werte annehmen und die gesamte Fläche unter ihrem Graph hat den Wert 1. Aus der Dichtefunktion f(x) lässt sich keine Wahrscheinlichkeit P(X) ablesen, da die Wahrscheinlichkeit dafür, dass eine stetige Zufallsvariable X einen konkreten Wert x annimmt, Null ist. Es gilt also: \(f\left( x \right) \ne P\left( {X = x} \right)\)

    Zwischen der Dichtefunktion f(x) und der Verteilungsfunktion F(x) besteht folgender Zusammenhang:

    \(\begin{array}{l} f\left( x \right) = F'\left( x \right)\\ F\left( X \right) = \int\limits_{ - \infty }^\infty {f(t)\,\,dt} \end{array}\)

    Durch Ableiten der Verteilfunktion F erhält man die Dichtefunktion. Aus einer gegebenen Dichtefunktion f erhält man durch Integrieren die Verteilfunktion F.

    Funktion f Funktion f: Normal(0, 1, x, false) Funktion g Funktion g: g(x) = Integral(f) + 0.5 f(x) ... Dichtefunktion Text1 = “f(x) ... Dichtefunktion” F(x) .. Verteilungsfunktion Text2 = “F(x) .. Verteilungsfunktion”


    Verteilungsfunktion

    Die Verteilungsfunktion F(x) einer stetigen Zufallsvariablen gibt die Wahrscheinlichkeit dafür an, dass eine Zufallsvariable X einen Wert der kleiner oder gleich x annimmt. Sie entspricht der Fläche unter der Dichtefunktion f(t), die sich bis zum Wert x kumuliert hat.

    \(F(X) = \int\limits_{ - \infty }^\infty {f\left( t \right)} \,\,dt\)

    Weil bei stetigen Zufallsvariablen die Wahrscheinlichkeit für jeden einzelnen Wert Null ist, gemäß \(P(X = x) = 0\) ist es egal, ob die Intervallgrenze zum Intervall gezählt wird [a, b], oder ob nicht (a, b):

    \(P\left( {a \le X \le b} \right) = P\left( {a < X \le b} \right) = P\left( {a \le X < b} \right) = P\left( {a < X < b} \right) = F(b) - F(a)\)


    Erwartungswert

    Der Erwartungswert E(X) einer stetigen Zufallsvariable X gibt an, welchen Wert die Zufallsvariable X im Mittel bei einer unbegrenzten Wiederholung annimmt. Gegenüber dem Erwartungswert einer diskreten Verteilung ersetzt man bei der stetigen Verteilung die Summe durch das Integral und die Wahrscheinlichkeit P(X=xi) durch die Dichtefunktion f(x).

    \(E(X) = \mu = \int\limits_{ - \infty }^\infty {x \cdot f\left( x \right)} \,\,dx\)


    Varianz

    Die Varianz einer stetigen Zufallsvariablen ist die mittlere quadratische Abweichung der Zufallsvariablen von ihrem Erwartungswert und somit ein Streumaß der beschreibenden Statistik.

    \({\sigma _x}^2 = Var\left( X \right) = E{\left( {X - {\mu _x}} \right)^2} = \int\limits_{ - \infty }^\infty {{{\left( {x - {\mu _x}} \right)}^2}} \cdot f\left( x \right)\,\,dx\)


    Verschiebungssatz

    Der Verschiebungssatz für stetige Zufallsvariablen kann den Rechenaufwand für die Berechnung der Varianz verringern.

    • Der 1. Term ist das einfacher zu rechnende Integral von X2 , also dem Erwartungswert von X2
    • Der 2. Term ist ganz simpel das Quadrat vom Erwartungswert von X

    \({\sigma _x}^2 = Var(X) = E{\left( X \right)^2} - {\left( {E\left( X \right)} \right)^2} = \left( {\int\limits_{ - \infty }^\infty {{x^2} \cdot f\left( x \right)\,\,dx} } \right) - {\left( {E\left( X \right)} \right)^2}\)


    Standardabweichung

    Die Varianz einer stetigen Zufallsvariablen hat den Nachteil, als Einheit das Quadrat der Einheit der zugrunde liegenden Zufallsvariablen zu haben. Das ist bei der Standardabweichung (auf Grund der Quadratwurzel) und beim Erwartungswert nicht der Fall.
    \({\sigma _x} = \sqrt {Var\left( X \right)} \)


    Physikalische Analogie für den Erwartungswert und für die Varianz:

    • Physikalisch entspricht der Erwartungswert dem Schwerpunkt. Man muss sich dabei die Massen R(X=xi) an den Positionen xi entlang vom Zahlenstrahl x plaziert vorstellen.
    • Physikalisch entspricht die Varianz dem Trägheitsmoment, wenn man den oben beschriebenen Zahlenstrahl um eine Achse dreht, die senkrecht auf den Zahlenstrahl steht und die durch den Schwerpunkt verläuft
    Stetige Zufallsvariable
    Zufallsexperiment
    Dichtefunktion
    Verteilungsfunktion stetiger Zufallsvariablen
    Erwartungswert stetige Verteilung
    Varianz einer stetigen Zufallsvariablen
    Verschiebungssatz für stetige Zufallsvariablen
    Standardabweichung
    Fragen oder Feedback

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Tablet
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH