Weltbevölkerung – 2115. Aufgabe 2_115
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 3057
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1850 | 1,260 |
1900 | 1,650 |
1950 | 2,536 |
1960 | 4,030 |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil a
Im Zeitraum von 1850 bis 1950 hat sich die Weltbevölkerung annähernd verdoppelt. Nehmen Sie für diesen Zeitraum an, dass die Weltbevölkerung jährlich um den gleichen Prozentsatz gewachsen ist.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diesen Prozentsatz.
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 3058
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil b
Ab 1970 kann die Entwicklung der Weltbevölkerung näherungsweise durch eine lineare Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Werte für die Weltbevölkerung der Kalenderjahre 1970 und 2000 eine Funktionsgleichung von f in Abhängigkeit von der Zeit t auf (t in Jahren mit t = 0 für das Jahr 1970, f(t) in Milliarden).
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, um wie viel Prozent der mithilfe von f ermittelte Wert für das Kalenderjahr 2020 vom in der obigen Tabelle angegebenen Wert abweicht. [0 / 1 P.]
Aufgabe 3059
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 3. Aufgabe - Best-of-Wertung
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weltbevölkerung
In der nachstehenden Tabelle ist für bestimmte Kalenderjahre die Schätzung der Weltbevölkerung (jeweils zur Jahresmitte) angegeben.
Kalenderjahr | Weltbevölkerung in Milliarden |
1970 | 3,700 |
1990 | 5,327 |
2000 | 6,140 |
2010 | 6,975 |
2020 | 7,790 |
Datenquellen: https://de.statista.com/statistik/daten/studie/1694/umfrage/entwicklung…,
https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/b…
[17.05.2020].
Teil c
In einem anderen Modell wird die Entwicklung der Weltbevölkerung ab 1970 durch die Funktion g modelliert.
\(g\left( t \right) = 3,7 \cdot {e^{ - 0,0001 \cdot {t^2} + 0,02 \cdot t}}\)
- t ... Zeit ab 1970 in Jahren
- g(t) ... Weltbevölkerung zur Zeit t in Milliarden
Gemäß diesem Modell wird die Weltbevölkerung zunächst zunehmen und in weiterer Folge abnehmen.
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der Funktion g das Maximum der Weltbevölkerung, in dem dies gemäß dem Modell eintreten soll.
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie mithilfe der Funktion g das Kalenderjahr, in dem dies gemäß dem Modell eintreten soll.
[0 / ½ / 1 P.]