Fahrradtour – 2113. Aufgabe 2_113
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 3052
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrradtour
Bettina macht eine 2-stündige Fahrradtour.
Teil a
Ihre Geschwindigkeit kann dabei näherungsweise durch die Funktion v beschrieben werden.
\(v\left( t \right) = - 0,08 \cdot {t^2} + 16{\text{ mit }}0 \leqslant t \leqslant 2\)
- t ... Zeit in h mit t = 0 für den Beginn der Fahrradtour
- v(t) ... Geschwindigkeit zum Zeitpunkt t in km/h
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Zeitdauer, die Bettina für die ersten 10 km dieser Fahrradtour benötigt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Beschleunigung zum Zeitpunkt t = 1. Geben Sie auch die zugehörige Einheit an.
[0 / ½ / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 3053
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 03. Mai 2022 - Teil-2-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrradtour
Bettina macht eine 2-stündige Fahrradtour.
Teil b
Der empfohlene Reifendruck eines Fahrradreifens sinkt mit zunehmender Breite des Reifens. Für einen empfohlenen Reifendruck von 2 bar bis 9 bar kann der empfohlene Reifendruck näherungsweise durch die Funktion p beschrieben werden.
\(p\left( x \right) = 19,1 \cdot {e^{ - 0,0376 \cdot x}}\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie das größtmögliche Intervall für die Breite des Reifens, für das sich ein empfohlener Reifendruck von 2 bar bis 9 bar ergibt.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung unter Angabe der zugehörigen Einheiten im gegebenen Sachzusammenhang.
\(p\left( {30} \right) - p\left( {20} \right) \approx - 2,8\)