Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Redaktion - Gleichungen 2-ten Grades mit Lösungen im Bereich der reellen Zahlen

Redaktion - Gleichungen 2-ten Grades mit Lösungen im Bereich der reellen Zahlen

LösungswegBeat the Clock

Aufgabe 65

Quadratische Gleichung mit einer Variablen

1. Teilaufgabe: Was versteht man unter einer quadratischen Gleichung ?
2. Teilaufgabe: Was versteht man unter einer normierten quadratischen Gleichung?
3. Teilaufgabe: Dokumentiere durch ein Beispiel, wie man eine quadratische Gleichung, in eine normierte quadratische Gleichung überführen kann.

Quadratische Gleichung mit einer Variablen
Normierte quadratischen Gleichung
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Startseite
rgb(244,123,130)
Bild
Illustration Medidation 1050x450
Startseite
LösungswegBeat the Clock

Aufgabe 66

Welche 3 Lösungsfälle können bei quadratischen Gleichungen auftreten? Unterscheide an Hand der Diskriminante!

Quadratische Gleichung mit einer Variablen
Normierte quadratischen Gleichung
Diskriminante gleich Null
Diskriminante größer Null
Diskriminante kleiner Null
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 67

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

\(a{x^2} + bx + c = 0;\,\,\,\,\,a{\text{, b}}{\text{, c }} \in {\Bbb R}\,\,\,\,\,a \ne 0\)

Zeige an Hand des Beispiels a=4 und b=12 für den Spezialfall c=0, wie man Gleichungen vom Typ \(a{x^2} + bx = 0\) lösen kann.

Quadratische Gleichung mit einer Variablen
Konstantes Glied
Herausheben bei Polynomen
Äquivalenzumformungen bei Gleichungen
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 68

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

\(a{x^2} + bx + c = 0;{\text{ a}}{\text{, b}}{\text{, c }} \in {\Bbb R}\,\,\,\,\,a \ne 0\)

Zeige an Hand des Beispiels a=4 und c= -100 für den Spezialfall b=0, wie man Gleichungen vom Typ \(a{x^2} + c = 0\) lösen kann.

Quadratische Gleichung mit einer Variablen
Lineares Glied
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 69

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung

\({x^2} = k\)

Für welche k hat diese Gleichung eine, zwei bzw. keine Lösung in R?

Quadratische Gleichung mit einer Variablen
Lineares Glied
Diskriminante gleich Null
Diskriminante größer Null
Diskriminante kleiner Null
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Startseite
rgb(244,123,130)
Bild
Illustration Medidation 1050x450
Startseite
LösungswegBeat the Clock

Aufgabe 70

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

Berechne:
\({\left( {x - 3} \right)^2} = 25\)

Quadratische Gleichung mit einer Variablen
Quadratische Ergänzung
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 71

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

\({x^2} + 4x + 2 = 14\)

Berechne x1,2 mittels der Methode eines vollständigen Quadrats.

Quadratische Gleichung mit einer Variablen
Quadratische Ergänzung
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 72

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

\({x^2} - 6x = - 5\)

Berechne x1,2 mittels der Methode eines vollständigen Quadrats.

Quadratische Gleichung mit einer Variablen
Quadratische Ergänzung
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 73

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

Berechne:
\({x^2} - 6x + 6 = 0\)

Quadratische Gleichung mit einer Variablen
pq-Formel
Diskriminante größer Null
Konjugiert komplexe Lösungen
Fragen oder Feedback

Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen

Startseite
rgb(244,123,130)
Bild
Illustration Medidation 1050x450
Startseite
LösungswegBeat the Clock

Aufgabe 74

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

Berechne:
\({x^2} - 6x + 9 = 0\)

Quadratische Gleichung mit einer Variablen
pq-Formel
Diskriminante gleich Null
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 75

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

Berechne:
\({x^2} - 6x + 12 = 0\)

Quadratische Gleichung mit einer Variablen
pq-Formel
Diskriminante kleiner Null
Fragen oder Feedback
LösungswegBeat the Clock

Aufgabe 76

Quadratische Gleichung mit einer Variablen

Gegeben sei folgende quadratische Gleichung:

\({x^2} - 6x + k = 0\)

Für welche k hat diese Gleichung eine, zwei bzw. keine Lösung in \({\Bbb R}\)?

Quadratische Gleichung mit einer Variablen
pq-Formel
Diskriminante gleich Null
Diskriminante größer Null
Diskriminante kleiner Null
Fragen oder Feedback

Seitennummerierung

  • Aktuelle Seite 1
  • Page 2
  • Nächste Seite
  • Letzte Seite

maths2mind®

Kostenlos und ohne Anmeldung
Lehrstoff und Aufgabenpool

verständliche Erklärungen
schneller Lernerfolg
mehr Freizeit

/
Bild
Illustration - Lady with Laptop
/

Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

  • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
  • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
  • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
  • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
  • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
  • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
  • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
  • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
  • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
  • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
  • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
  • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
  • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
  • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
  • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

/

Fußzeile

  • FAQ
  • Über maths2mind
  • Cookie Richtlinie
  • Datenschutz
  • Impressum
  • AGB
  • Blog

© 2022 maths2mind GmbH