Österreichische BHS Matura - 2022.09.20 - BRP & FAfEP & BASOP
Aufgabe 4581
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erneuerbare Energie in Österreich – Aufgabe B_559
Teil a
Im Jahr 2015 teilte sich die Energieproduktion aus erneuerbaren Energieträgern in Österreich in folgende 5 Bereiche auf: Wasserkraft, Holzbrennstoffe, Fernwärme, Biokraftstoffe und sonstige Energieträger. Der Anteil der Wasserkraft an der gesamten Energieproduktion betrug in diesem Jahr 37,3 %.
1. Teilaufgabe - Bearbeitungszeit 05:40
Kennzeichnen Sie im nachstehenden Kreisdiagramm denjenigen Sektor, der der Energieproduktion aus Wasserkraft entspricht.
Abbildung fehlt
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4582
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erneuerbare Energie in Österreich – Aufgabe B_559
Teil b
In der nachstehenden Tabelle sind die Werte der Energieproduktion durch Photovoltaik und Windkraft in Österreich in Terajoule (TJ) für die Jahre 2008 bis 2015 angegeben.#
Jahr | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
Energieproduktion durch Photovoltaik und Windkraft in TJ |
7349 | 7211 | 7750 | 7597 | 10078 | 13605 | 16672 | 20799 |
Die Energieproduktion soll in Abhängigkeit von der Zeit t näherungsweise durch die lineare Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion f auf. Wählen Sie dabei t = 0 für das Jahr 2008.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung von f im gegebenen Sachzusammenhang. Geben Sie dabei die zugehörige Einheit an.
[0 / 1 P.]
Aufgabe 4583
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erneuerbare Energie in Österreich – Aufgabe B_559
Teil c
In der nachstehenden Abbildung ist die Entwicklung der Energiegewinnung aus allen erneuerbaren Energieträgern in Österreich für den Zeitraum von 2008 bis 2015 dargestellt.
Abbildung fehlt
Lukas betrachtet diese Abbildung und behauptet: „Im Jahr 2013 wurde in Österreich rund doppelt so viel Energie aus erneuerbaren Energieträgern gewonnen wie im Jahr 2011. Das erkenne ich daran, dass die Säule für das Jahr 2013 rund doppelt so hoch wie jene für das Jahr 2011 ist.“
1. Teilaufgabe - Bearbeitungszeit 05:40
Erklären Sie, warum diese Argumentation falsch ist.
[0 / 1 P.]
Aufgabe 4584
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Erneuerbare Energie in Österreich – Aufgabe B_559
Teil d
Die Leistung von Windkraftwerken ist unter anderem von der Windgeschwindigkeit abhängig. Die Windgeschwindigkeit kann in Abhängigkeit von der Höhe über dem Erdboden für einen bestimmten Standort näherungsweise durch die Funktion v beschrieben werden.
\(\eqalign{ & v\left( h \right) = 2,5 \cdot \ln \left( h \right){\text{ }} \cr & {\text{mit h}} \geqslant {\text{1}} \cr} \)
- h ... Höhe über dem Erdboden in m
- v(h) ... Windgeschwindigkeit in der Hohe h in m/s
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen der Funktion v ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diejenige Höhe, in der die Windgeschwindigkeit 8 m/s beträgt.
[0 / 1 P.]
Aufgabe 4585
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzzug – Aufgabe B_560
Holzzüge sind nach wie vor bei Kindern sehr beliebt.
Teil a
In einer bestimmten Zubehörpackung für einen Holzzug sind folgende 16 Teile enthalten:
Abbildung fehlt
c Ravensburger AG
1. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie im nachstehenden Venn-Diagramm die jeweiligen Anzahlen in die dafür vorgesehenen Kästchen ein.
[0 / 1 P.]
Abbildung fehlt
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, wie viel Prozent der Teile dieser Zubehörpackung nur geradlinig verlaufen.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Markieren Sie im nachstehenden Venn-Diagramm alle Bereiche, in denen Teile dieser Zubehörpackung enthalten sind.
[0 / 1 P.]
Abbildung fehlt
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4586
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzzug – Aufgabe B_560
Holzzüge sind nach wie vor bei Kindern sehr beliebt.
Teil b
In der nachstehenden Abbildung ist eine Brücke für einen Holzzug dargestellt.
Abbildung fehlt
c Ravensburger AG
Der Verlauf der oberen Begrenzungslinie soll durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie denjenigen Funktionstyp an, der auf f zutreffen kann.
[1 aus 5] [0 / 1 P.]
- Funktionstyp 1: quadratische Funktion
- Funktionstyp 2: Polynomfunktion 3. Grades
- Funktionstyp 3: Polynomfunktion 4. Grades
- Funktionstyp 4: lineare Funktion
- Funktionstyp 5: Logarithmusfunktion
2. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie die Anzahl der Stellen von f an, für die sowohl f″(x) = 0 als auch f′(x) ≠ 0 gilt.
Anzahl der Stellen:
[0 / 1 P.]
Aufgabe 4587
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzzug – Aufgabe B_560
Holzzüge sind nach wie vor bei Kindern sehr beliebt.
Teil c
Der Holzzug überwindet auf einem ansteigenden Teil mit einer horizontalen Länge von 216 mm einen Höhenunterschied von 54 mm.
1. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die mittlere Steigung entlang dieses ansteigenden Teiles in Prozent.
[0 / 1 P.]
Aufgabe 4588
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Holzzug – Aufgabe B_560
Holzzüge sind nach wie vor bei Kindern sehr beliebt.
Teil d
Ein bestimmter Hersteller bietet geradlinig verlaufende Teile nur in folgenden Längen an: 54 mm, 72 mm, 108 mm, 144 mm, 216 mm. Diese Längen (in mm) sind Glieder der arithmetischen Folge (an).
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein explizites Bildungsgesetz der Folge (an).
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie in der nachstehenden Tabelle die fehlenden Werte von n ein.
[0 / 1 P.]
n | 1 | ||||
an | 54 | 72 | 108 | 144 | 216 |
Aufgabe 4589
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Grazbach – Aufgabe B_561
Der Kroisbach und der Leonhardbach sind Bäche in Graz, die nach ihrem Zusammenfluss den Grazbach bilden.
Teil a
Vor dem Zusammenfluss zum Grazbach fließt der Kroisbach unter einer Straße. Diese Straße begrenzt zusammen mit zwei anderen Straßen einen dreieckigen Platz mit den Seitenlängen a, b und c. (Siehe nachstehende Abbildung – Ansicht von oben.)
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung des Winkels α auf. Verwenden Sie dabei a, b und c.
α =
[0 / 1 P.]
Die folgenden Abmessungen dieses dreieckigen Platzes sind bekannt:
c = 54 m, b = 39,6 m, α = 51,8°
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie das Ergebnis der nachstehenden Berechnung. Geben Sie dabei die zugehörige Einheit an.
\(\dfrac{{54 \cdot 39,6 \cdot \sin \left( {51,8^\circ } \right)}}{2} \approx 840\)
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den in der obigen Abbildung markierten Winkel β.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4590
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Grazbach – Aufgabe B_561
Der Kroisbach und der Leonhardbach sind Bäche in Graz, die nach ihrem Zusammenfluss den Grazbach bilden.
Teil b
In der nachstehenden Abbildung ist der Bereich des Zusammenflusses in einem Vermessungsplan modellhaft dargestellt. Im Koordinatenursprung O fließen die beiden Bäche zusammen.
Abbildung fehlt
Der Kroisbach fließt vom Punkt P zum Punkt K. Es gilt:
\(\overrightarrow {PK} = \left( {\begin{array}{*{20}{c}} { - 5}\\ { - 7} \end{array}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie in der obigen Abbildung den Punkt P ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie denjenigen spitzen Winkel, den die Vektoren \(\overrightarrow l {\rm{ und }}\overrightarrow k \) miteinander einschließen.
[0 / 1 P.]
Aufgabe 4591
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 20. September 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Der Grazbach – Aufgabe B_561
Der Kroisbach und der Leonhardbach sind Bäche in Graz, die nach ihrem Zusammenfluss den Grazbach bilden.
Teil c
In der nachstehenden Abbildung ist ein Abschnitt des Kanals des Grazbachs in einem Vermessungsplan modellhaft dargestellt.
Abbildung fehlt
Ein Vermesser modelliert die Begrenzungslinien des Kanals im Intervall [–150; 15] mit den Graphen der Funktionen f und g.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung des Inhalts A der in der obigen Abbildung grau markierten Fläche auf.
A =
[0 / 1 P.]
Für die Polynomfunktion 4. Grades f gilt:
\(f\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2}\)
Der Graph von f hat den Tiefpunkt T = (–92,2 | –17,6) und schneidet die x-Achse an der Stelle x = –133,5.
2. Teilaufgabe - Bearbeitungszeit 11:20
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten a, b und c.
[0 / 1 / 2 P.]
Die Funktion g ist ebenfalls eine Polynomfunktion 4. Grades.
3. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie diejenige Aussage an, die auf die Funktion g im Intervall [–150; 15] zutrifft.
[1 aus 5]
[0 / 1 P.]
- Aussage 1: g hat genau 2 Nullstellen.
- Aussage 2: g ändert genau 1-mal das Monotonieverhalten.
- Aussage 3: g hat nur negative Funktionswerte.
- Aussage 4: g hat genau 1 lokale Extremstelle.
- Aussage 5: g ändert genau 1-mal das Krümmungsverhalten.