Österreichische BHS Matura - 2022.01.12 - HTL 2
Aufgabe 4533
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil a
Die Oberarmlänge von Burschen einer bestimmten Altersgruppe kann als annähernd normalverteilt angenommen werden. Der Erwartungswert μ beträgt 34,7 cm, die Standardabweichung σ betragt 0,4 cm.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass die Oberarmlänge eines zufällig ausgewählten Burschen dieser Altersgruppe mindestens 34,4 cm betragt.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 4534
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil b
Von 9 zufällig ausgewählten Mädchen einer anderen Altersgruppe wurden die Oberarmlänge und die Körpergröße gemessen:
Körpergröße in cm | 165 | 164 | 166 | 159 | 163 | 170 | 158 | 168 | 172 |
Oberarmlänge in cm | 34,5 | 34,7 | 34,6 | 34,0 | 34,5 | 35,0 | 33,8 | 34,9 | 34,9 |
Die Oberarmlänge soll in Abhängigkeit von der Körpergröße näherungsweise durch die lineare Funktion g beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion g auf.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Beurteilen Sie mithilfe des Korrelationskoeffizienten, ob die lineare Funktion g ein geeignetes Modell zur Beschreibung dieser Abhängigkeit ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung der linearen Funktion g im gegebenen Sachzusammenhang.
[0 / 1 P.]
Aufgabe 4535
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Körpermaße – Aufgabe B_533
Teil c
Der Median des Körperfettanteils von Burschen ist altersabhängig (siehe nachstehende Tabelle).
Alter in Jahren | 10 | 12 | 14 | 16 |
Median des Körperfettanteils in % | 18,9 | 17,8 | 14,1 | 15,7 |
Der Median des Körperfettanteils kann in Abhängigkeit vom Alter t durch die Polynomfunktion 3. Grades f mit
\(f\left( t \right) = a \cdot {t^3} + b \cdot {t^2} + c \cdot t + d\)
modelliert werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten von f.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie diese Koeffizienten.
[0 / 1 P.]
Eine Polynomfunktion 3. Grades h mit
\(h\left( x \right) = {a_1} \cdot {x^3} + {b_1} \cdot {x^2} + {c_1} \cdot x + {d_1}\)
hat 2 lokale Extremstellen.
3. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie an, welches Vorzeichen die Diskriminante der Gleichung h′(x) = 0 haben muss. Begründen Sie Ihre Entscheidung.
[0 / 1 P.]
Aufgabe 5619
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkgeschwindigkeit von Fässern – Aufgabe B_536
Über Jahre hinweg wurden Fässer mit Problemstoffen illegal im Meer versenkt.
Teil a
Für die Sinkgeschwindigkeit vS der Fässer im Wasser in Abhängigkeit von der Zeit t gilt annähernd:
- Die momentane Änderungsrate der Sinkgeschwindigkeit ist direkt proportional zur Differenz zwischen der Endgeschwindigkeit S und der aktuellen Sinkgeschwindigkeit vS. Der Proportionalitätsfaktor wird mit k bezeichnet.
1. Teilaufgabe - Bearbeitungszeit 05:40
Kreuzen Sie diejenige Gleichung an, die diesen Sachverhalt richtig beschreibt.
[1 aus 5] [0 / 1 P.]
- Gleichung 1: \(\dfrac{{d{v_S}}}{{dt}} = k \cdot \left( {S - {v_S}} \right)\)
- Gleichung 2: \(\dfrac{{d{v_S}}}{{dt}} = k \cdot S - {v_S}\)
- Gleichung 3: \(\dfrac{{d{v_S}}}{{dt}} = S - k \cdot {v_S}\)
- Gleichung 4: \(\dfrac{{d{v_S}}}{{dt}} = \dfrac{k}{{S - {v_S}}}\)
- Gleichung 5: \(\dfrac{{d{v_S}}}{{dt}} = S - \dfrac{k}{{{v_S}}}\)
Aufgabe 5620
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkgeschwindigkeit von Fässern – Aufgabe B_536
Über Jahre hinweg wurden Fässer mit Problemstoffen illegal im Meer versenkt.
Teil b
Für bestimmte Fässer kann die Sinkgeschwindigkeit in Abhängigkeit von der Zeit näherungsweise durch die nachstehende Differenzialgleichung beschrieben werden.
\(\dfrac{{dv}}{{dt}} + 0,25 \cdot v = 2\)
- t … Zeit in s
- v(t) … Sinkgeschwindigkeit zur Zeit t in m/s
1. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie mithilfe der Methode Trennen der Variablen, dass die allgemeine Lösung der zugehörigen homogenen Differenzialgleichung durch
\({v_{h\left( t \right)}} = C \cdot {e^{ - 0,25 \cdot t}}\)
gegeben ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Ermitteln Sie die allgemeine Lösung der gegebenen inhomogenen Differenzialgleichung.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 5621
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinkgeschwindigkeit von Fässern – Aufgabe B_536
Über Jahre hinweg wurden Fässer mit Problemstoffen illegal im Meer versenkt.
Teil c
Von einem Schiff aus werden bestimmte Fässer über Bord geworfen. Diese sinken nach dem Eintauchen ins Wasser senkrecht nach unten. Die Sinkgeschwindigkeit dieser Fässer im Wasser lässt sich näherungsweise durch die Funktion v1 beschreiben.
\({v_1}\left( t \right) = 8 - 5 \cdot {e^{ - 0,25 \cdot t}}{\text{ mit }}t \geqslant 0\)
- t … Zeit nach dem Eintauchen ins Wasser in s
- v1(t) … Sinkgeschwindigkeit zur Zeit t in m/s
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Sinkgeschwindigkeit der Fässer beim Eintauchen ins Wasser.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Argumentieren Sie mathematisch, dass die Beschleunigung zum Zeitpunkt t0 = 0 s am größten ist.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, nach welcher Zeit ein solches Fass eine Wassertiefe von 100 m erreicht.
[0 / 1 P.]
Aufgabe 5622
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke und Gebäude – Aufgabe B_537
Teil a
In der nachstehenden Abbildung ist ein Betonsockel modellhaft dargestellt.
Abbildung fehlt
Bei der Darstellung des Modells in einem Koordinatensystem werden folgende Punkte verwendet:
- B = (12 | 6 | 2)
- C = (2 | 26 | 2)
- D = (–10 | 20 | 0)
- E = (–1,5 | 5,5 | 15,5)
- F = (4,5 | 8,5 | 16,5)
- G = (–0,5 | 18,5 | 16,5)
Die Grundfläche ABCD ist rechteckig.
1. Teilaufgabe - Bearbeitungszeit 05:40
Weisen Sie nach, dass die Kante BC parallel zur Kante FG ist.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Zeigen Sie, dass das Viereck EFGH im Punkt F einen rechten Winkel hat.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie denjenigen Winkel, den die Kante BF mit der Diagonalen BD einschließt.
[0 / 1 P.]
Aufgabe 5623
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke und Gebäude – Aufgabe B_537
Teil b
Die nachstehende Abbildung zeigt die Skizze eines Baugrundstücks.
Abbildung fehlt
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie eine Formel zur Berechnung des Flächeninhalts F des skizzierten Baugrundstücks auf.
F =
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Länge der Diagonalen BD für a = 40 m, d = 30 m und α = 60°.
[0 / 1 P.]
Aufgabe 5624
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 12. Jänner 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grundstücke und Gebäude – Aufgabe B_537
Teil c
Die nachstehenden Abbildungen zeigen die Windmühle Oppelhain in Deutschland.
Bildquelle: Edweisch – own work, public domain, https://commons.wikimedia.org/wiki/File:Bockwindm%C3%BChleOppelhain.jpg
[03.03.2023].
Illustration fehlt
Der Drehpunkt M der Flügel befindet sich 13 m über dem Boden. Die Länge eines Flügels (Strecke MP) betragt 10,62 m.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Höhe des Punktes P über dem Boden.
[0 / 1 P.]
Die Flügel drehen sich mit konstanter Geschwindigkeit gegen den Uhrzeigersinn und benötigen für eine volle Umdrehung 10 s. Die obige schematische Darstellung zeigt die Flügelstellung zum Zeitpunkt t = 0. Die Höhe des Punktes P über dem Boden kann durch eine Funktion h in Abhängigkeit von der Zeit t beschrieben werden.
\(h\left( t \right) = a \cdot sin\left( {\omega \cdot t + \varphi } \right) + c\)
t... Zeit in s
h(t) ... Höhe des Punktes P über dem Boden zur Zeit t in m
2. Teilaufgabe - Bearbeitungszeit 05:40
Geben Sie die Parameter a und c der Funktion h an.
- a =
- c =
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
- ω =
- φ =
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen