Österreichische BHS Matura - 2021.05.21 - BRP & FAfEP & BASOP - 3 Teil B Beispiele
Aufgabe 4434
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil a
In einem Schlosspark wird ein dreieckiges Blumenbeet angelegt (siehe nebenstehende Abbildung – Maße in m).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie den nachstehenden Ausdruck durch Eintragen der richtigen Werte in die dafür vorgesehenen Kästchen.
\(s = \sqrt {\boxed{} + \boxed{} - 2 \cdot {{10}^2} \cdot \cos \left( {\boxed{}} \right)} \)
[0 / 1 P.]
Das Blumenbeet soll mit einem Vlies gegen Unkraut abgedeckt werden. Das Abdecken des Blumenbeets kostet pro Quadratmeter € 1,42.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kosten für das Abdecken des Blumenbeets.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4435
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil b
Ein rechteckiges Blumenbeet mit den Seitenlangen b und h ist in einen Bereich für Rosen und einen Bereich für Tulpen unterteilt. Die Begrenzungslinie zwischen diesen Bereichen kann modellhaft durch den Graphen der Funktion f beschrieben werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie mithilfe der obigen Abbildung eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.
A =
[0 / 1 P.]
f ist eine Polynomfunktion 3. Grades mit
\(f\left( x \right) = a \cdot {x^3} + b \cdot {x^2} + c \cdot x + d\)
Folgende Punkte liegen auf dem Graphen von f: (3 | 0,8), (5 | 2,7), (7 | 3,7), (9 | 2,3).
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie mithilfe dieser Punkte die Koeffizienten a, b, c und d.
[0 / 1 P.]
Aufgabe 4436
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schlosspark - Aufgabe B_507
Teil c
Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren
\(\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c ,\,\,...\,\,,\overrightarrow h \)
(in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors. Es gilt:
\(\overrightarrow e = \left( {\begin{array}{*{20}{c}} 0 \\ 3 \end{array}} \right);\,\,\,\overrightarrow f = \left( {\begin{array}{*{20}{c}} { - 2} \\ 0 \end{array}} \right);\,\,\,\overrightarrow g = \left( {\begin{array}{*{20}{c}} 1 \\ 2 \end{array}} \right);\,\,\,\overrightarrow h = \left( {\begin{array}{*{20}{c}} 4 \\ 0 \end{array}} \right)\)
In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt A des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt P sind bereits eingezeichnet.
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.
\(\begin{gathered} {b_x} = \boxed{} \hfill \\ {b_y} = \boxed{} \hfill \\ \end{gathered} \)
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren \(\overrightarrow e ,\,\,\,\overrightarrow f ,\,\,\,\overrightarrow g {\text{ und }}\overrightarrow h \)
4. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: Die Vektoren a und c sind Gegenvektoren.
- Aussage 2: Die Vektoren f und g haben den gleichen Betrag.
- Aussage 3: Die Vektoren f und h sind parallel.
- Aussage 4: Die Vektoren d und e haben den gleichen Betrag.
- Aussage 5: Die Vektoren d und e stehen normal aufeinander.
Aufgabe 4446
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil a
Die Pädagogin wählt 2 verschiedene Kinder aus den 26 Kindern ihrer Gruppe zufällig aus.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass beide Kinder sowohl das Kinderlied "Aramsamsam" als auch das Kinderlied "Backe, backe Kuchen" kennen.
[0 / 1 P.]
1. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie ein mögliches Ereignis E im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit mit dem nachstehenden Ausdruck berechnet wird.
\(P\left( E \right) = \dfrac{3}{{26}} \cdot \dfrac{2}{{25}}\)
Aufgabe 4447
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil b
In der nachstehenden Tabelle sollen für diesen Sachverhalt die zugehörigen Prozentsätze für die Gruppe von 26 Kindern eingetragen werden.
kennen genau eines der beiden Kinderlieder | % |
kennen beide Kinderlieder | % |
kennen keines der beiden Kinderlieder | 11,54% |
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der obigen Tabelle die beiden fehlenden Zahlen ein.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Kreisdiagramm so, dass es den durch die Tabelle beschriebenen Sachverhalt wiedergibt.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4448
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kinderlieder - Aufgabe B_511
Eine Pädagogin fragt die 26 Kinder ihrer Gruppe, ob sie das Kinderlied "Aramsamsam" und ob sie das Kinderlied "Backe, backe Kuchen" kennen.
- 7 Kinder kennen beide Kinderlieder.
- Insgesamt 13 Kinder kennen das Kinderlied Aramsamsam.
- 3 Kinder kennen keines der beiden Kinderlieder.
Teil c
1. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie das nachstehende Venn-Diagramm durch Eintragen aller Anzahlen in die dafür vorgesehenen Kästchen.
[0 / 1 P.]
G | Menge aller Kinder der Gruppe |
A | Menge der Kinder, die das Kinderlied Aramsamsam kennen |
B | Menge der Kinder, die das Kinderlied Backe, backe Kuchen kennen |
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Anzahl der Elemente der Menge \(\left( {A \cup B} \right)\backslash \left( {A \cap B} \right)\)
[0 / 1 P.]
Mit den Kindern, denen beide Kinderlieder bekannt sind, singt die Pädagogin das bis dahin allen Kindern der Gruppe unbekannte Kinderlied "Twinkle, twinkle, little star".
T | Menge der Kinder, die das Kinderlied "Twinkle, twinkle, little star" mit der Pädagogin singen |
3. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [0 / 1 P.]
- Aussage 1: \(T \subseteq \left( {A \cup B} \right)\)
- Aussage 2: \(T \subseteq \left( {A \cap B} \right)\)
- Aussage 3: \(T \subseteq \left( {G\backslash B} \right)\)
- Aussage 4: \(T{\not \subseteq }\left( {B\backslash A} \right)\)
- Aussage 5: \(T{\not \subseteq }\left( {A\backslash B} \right)\)
Aufgabe 4449
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Im Zeitraum von 1970 bis 2010 hat der jährliche globale Rohstoffverbrauch von 22 Milliarden Tonnen auf 70 Milliarden Tonnen zugenommen.* Im selben Zeitraum hat sich die Weltbevölkerung auf 7 Milliarden verdoppelt.
* Vgl. http://derstandard.at/2000041471018/Weltweiter-Rohstoffverbrauch-seit-1… [26.11.2020].
Teil a
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie auf Basis dieser Angaben den durchschnittlichen jährlichen Rohstoffverbrauch pro Person im Jahr 1970.
[0 / 1 P.]
Die zeitliche Entwicklung des globalen Rohstoffverbrauchs kann durch eine arithmetische Folge oder durch eine geometrische Folge modelliert werden.
Im Modell A wird das jährliche prozentuelle Wachstum bezogen auf das jeweilige Vorjahr als konstant angenommen.
2. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie für das Modell A ein explizites Bildungsgesetz für den globalen Rohstoffverbrauch. Wählen Sie n = 1 für das Jahr 1970, d. h., n = 41 entspricht dem Jahr 2010.
[0 / 1 P.]
Im Modell B wird das jährliche absolute Wachstum als konstant angenommen.
3. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie für das Modell B ein rekursives Bildungsgesetz für den globalen Rohstoffverbrauch. Wählen Sie n = 1 für das Jahr 1970, d. h., n = 41 entspricht dem Jahr 2010.
[0 / 1 P.]
Für das Jahr 2050 wird ein jährlicher globaler Rohstoffbedarf von 180 Milliarden Tonnen angenommen.
4. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den fehlenden Exponenten Exp
180 Milliarden Tonnen = 1,8 ∙ 10Exp kg
Exp=
[0 / 1 P.]
Aufgabe 4450
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Teil b
Die zeitliche Entwicklung des jährlichen globalen Rohstoffverbrauchs kann durch die streng monoton steigende lineare Funktion g oder durch die streng monoton steigende Exponentialfunktion h modelliert werden (siehe nachstehende Abbildung).
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht.
[0 / 1 P.]
Für ____1____ von g und h gilt: ____2____ .
- Lücke 1_1: genau 1 Stelle
- Lücke 1_2: genau 2 Stellen
- Lücke 1_3: mehr als 2 Stellen
- Lücke 2_1: \(g\left( t \right) = h\left( t \right) = 0\)
- Lücke 2_2: \(g'\left( t \right) = h'\left( t \right)\)
- Lücke 3_3: \(g''\left( t \right) = h''\left( t \right)\)
Aufgabe 4451
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ressourcen - Aufgabe B_512
Teil c:
Die zeitliche Entwicklung des jährlichen globalen Rohstoffverbrauchs kann durch verschiedene Polynomfunktionen modelliert werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ordnen Sie den beiden Aussagen jeweils den entsprechenden Funktionsgraphen aus
A bis D zu.
[0 / 1 P.]
- Aussage 1: Für alle t mit 2010 < t < 2050 gilt: f″(t) > 0
- Aussage 2: Für genau ein t mit 1970 < t < 2050 gilt: f′(t) = 0 und f″(t) < 0
- Graph A:
- Graph B:
- Graph C:
- Graph D:
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.