Österreichische BHS Matura - 2018.05.09 - HUM & HLFS - 3 Teil B Beispiele
Aufgabe 4083
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Der Akku eines Smartphones entlädt sich aufgrund von Hintergrundanwendungen auch dann, wenn das Gerät nicht aktiv benutzt wird.
Teil a
Für ein bestimmtes Smartphone wird die zeitliche Entwicklung des Akku-Ladestands in Prozent beobachtet. Zur Zeit t = 0 ist der Akku vollständig aufgeladen.
Zeit t in Stunden | Akku-Ladestand in Prozent |
0 | 100 |
3 | 94 |
6 | 81 |
10 | 71 |
18 | 43 |
Die zeitliche Entwicklung des Akku-Ladestands in Prozent soll beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie eine Gleichung der zugehörigen linearen Regressionsfunktion.
[1 Punkt]
Bei einem Akku-Ladestand von 15 % sollte das Smartphone wieder ans Stromnetz angeschlossen werden.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Stunden nach dem vollständigen Aufladen dies gemäß diesem linearen Regressionsmodell gemäß Teil a der Fall ist.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4084
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Der Akku eines Smartphones entlädt sich aufgrund von Hintergrundanwendungen auch dann, wenn das Gerät nicht aktiv benutzt wird.
Teil b
Die zeitliche Entwicklung des Akku-Ladestands beim Aufladen lasst sich näherungsweise durch die Funktion A beschreiben:
\(A\left( t \right) = 100 - 85 \cdot {e^{ - \lambda \cdot t}}\)
- t ... Zeit nach Beginn des Aufladens in h
- A(t) ... Akku-Ladestand zur Zeit t in Prozent
- \(\lambda \) ... positiver Parameter
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie mathematisch, dass sich die Funktionswerte von A mit wachsendem t dem Wert 100 annähern.
[1 Punkt]
2 Stunden nach Beginn des Aufladens betragt der Akku-Ladestand 80 %.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie λ.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, zu welcher Zeit nach Beginn des Aufladens der Akku-Ladestand 90 % beträgt.
[1 Punkt]
Aufgabe 4085
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Smartphones - Aufgabe B_079
Teil c
Die Entwicklung der weltweiten Verkaufszahlen von Smartphones kann modellhaft durch die Funktion S beschrieben werden:
\(S\left( t \right) = \dfrac{{1918}}{{1 + 4,84 \cdot {e^{ - 0,54 \cdot t}}}}\)
- t ... Zeit in Jahren (t = 0 entspricht dem Beginn des Jahres 2010)
- S(t) ... Anzahl der bis zur Zeit t insgesamt verkauften Smartphones in Millionen Stück
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie mithilfe dieses Modells die Anzahl der bis zum Beginn des Jahres 2020 insgesamt verkauften Smartphones.
[1 Punkt]
Im nachstehenden Diagramm ist der Graph der Ableitungsfunktion S′ dargestellt. Auf dem Graphen von S′ ist der Hochpunkt H markiert.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die mathematische Bedeutung der Stelle t = 2,9 in Bezug auf die Funktion S. [1 Punkt]
Aufgabe 4105
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil a
Ein Unternehmen stellt Kunststoffrohre her, die zu einem fixen Preis verkauft werden. Im nachstehenden Diagramm ist der Graph der Kostenfunktion K für die Herstellung der Kunststoffrohre dargestellt.
Der Break-even-Point liegt bei einer Produktion von 8 ME. Die Kosten betragen dabei 400 GE.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie den Graphen der Erlösfunktion E im obigen Diagramm ein.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den zugehörigen Marktpreis.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie in der nachstehenden Wertetabelle die fehlenden Werte für die zugehörige Gewinnfunktion G.
[1 Punkt]
x in ME | 0 | 8 | 16 |
G(x) in GE0 | 0 |
Aufgabe 4106
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil b
Die Grenzkostenfunktion K′ für die Herstellung von Kunststoffrohren ist gegeben durch:
\(K'\left( x \right) = \dfrac{{15}}{{32}} \cdot {x^2} - \dfrac{{35}}{4} \cdot x + 60\)
x | produzierte Menge in ME |
K'(x) |
Grenzkosten bei der produzierten Menge x in GE/ME |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Kostenfunktion K mit K(16) = 600.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Kostenkehre.
[1 Punkt
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4107
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil c
Ein anderes Unternehmen stellt Keramikrohre her. Von der quadratischen Erlösfunktion E ist für den Absatz von 10 ME bekannt:
- E(10) = 15
- E′(10) = –1,5
- E″(10) = –0,6
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage über den Erlös bei einem Absatz von 11 ME an.
[1 aus 5] [1 Punkt]
- Aussage 1: E(11)=13,2
- Aussage 2: E(11)=13,5
- Aussage 3: E(11)=14,1
- Aussage 4: E(11)=16,2
- Aussage 5: E(11)=16,5
Aufgabe 4108
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Rohrproduktion - Aufgabe B_089
Teil d
Die Erlösfunktion E für Betonrohre ist gegeben durch:
\(E\left( x \right) = - 3,2 \cdot x \cdot \left( {x - 25} \right)\)
mit
x | Absatzmenge in ME |
E(x) | Erlös bei der Absatzmenge x in GE |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung der zugehörigen Preisfunktion der Nachfrage.
[1 Punkt]
2 Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Höchstpreis.
[1 Punkt]
Aufgabe 4109
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil a
Die Preise von Baugrundstücken sind in den letzten Jahren erheblich gestiegen. Herr Pfeifer hat ein Grundstück um € 228.000 gekauft. Nach der Umwidmung in ein Baugrundstück kann er es 4 Jahre später um € 753.000 verkaufen.
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den mittleren jährlichen Zinssatz des eingesetzten Kapitals ohne Berücksichtigung von Spesen, Gebühren und Steuern.
[1 Punkt]
Aufgabe 4110
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil b
Frau Maier möchte ein Baugrundstück verkaufen. Sie bekommt zwei Angebote.
- Herr Altmann bietet € 150.000 sofort bei Vertragsabschluss und € 50.000 nach 2 Jahren.
- Frau Bogner bietet € 202.000 ein Jahr nach Vertragsabschluss.
Frau Maier vergleicht die beiden Angebote.
1. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie für einen Zinssatz von 3 % p. a. nach, dass sich die beiden Angebote zum Zeitpunkt des Vertragsabschlusses um rund € 1.013 unterscheiden.
[1 Punkt]
Für die beiden Angebote wird folgende Gleichung aufgestellt:
\(150000 \cdot {x^2} + 50000 = 202000 \cdot x\)
Eine Lösung dieser Gleichung ist x ≈ 1,0198.
2. Teilaufgabe - Bearbeitungszeit 5:40
Interpretieren Sie die Bedeutung von x im gegebenen Sachzusammenhang.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4111
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil c
Herr Müller nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 100.000 auf. Der vereinbarte Zinssatz betragt 3 % p. a. Der Kredit soll durch die auf der nachstehenden Zeitachse dargestellten Zahlungen vollständig getilgt werden.
Die Zahlungen R können als nachschüssige Rente aufgefasst werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Markieren Sie auf der Zeitachse den Bezugszeitpunkt für den Barwert dieser nachschüssigen Rente.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Höhe der Zahlungen R.
[1 Punkt]
Aufgabe 4112
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil d
Frau Marth nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 120.000 mit jährlich nachschüssigen Kreditrückzahlungen auf. Der vereinbarte Zinssatz beträgt 2,5 % p. a. Für die ersten zwei Jahre vereinbart Frau Marth Sonderbedingungen, die im nachstehenden Tilgungsplan dargestellt sind.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 120.000 | |||
1 | ? | € 0,00 | € 123.000 | |
2 | € 0,00 | ? | € 123.000 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Beträge für die beiden grau markierten Zellen im obigen Tilgungsplan.
[1 Punkt]
Ab dem Jahr 3 werden jährliche Annuitäten in Hohe von € 10.000 bezahlt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele volle Annuitäten in Hohe von € 10.000 bezahlt werden müssen.
[1 Punkt]