Österreichische BHS Matura - 2017.05.10 - HTL1 - 4 Teil B Beispiele
Aufgabe 4016
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil a
Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.
Das Profil des Bodens kann näherungsweise durch den Graphen einer Polynomfunktion p beschrieben werden, die Unterkante der Messlatte kann durch den Graphen einer linearen Funktion f beschrieben werden. Die Messlatte berührt den Boden in den Punkten \({P_1} = \left( {{x_1}\left| {p\left( {{x_1}} \right)} \right.} \right){\text{ und }}{P_2} = \left( {{x_2}\left| {p\left( {{x_2}} \right)} \right.} \right)\). Eine der folgenden Aussagen stimmt nicht mit der obigen Abbildung überein.
- Aussage 1: \(k = \dfrac{{p\left( {{x_2}} \right) - p\left( {{x_1}} \right)}}{{{x_2} - {x_1}}}\)
- Aussage 2: \(p'\left( {{x_1}} \right) = 0\)
- Aussage 3: \(p'\left( {{x_2}} \right) = k\)
- Aussage 4: \(p'\left( {{x_1}} \right) = p'\left( {{x_2}} \right)\)
- Aussage 5: \(f\left( {{x_1}} \right) = p\left( {{x_1}} \right)\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die nicht zutreffende Aussage an.
[1 aus 5] [1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4017
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil b
1. Teilaufgabe - Bearbeitungszeit 5:40
Um Unebenheiten eines Bodens festzustellen, wird eine Messlatte verwendet.
Begründen Sie, warum der Grad der in der obigen Abbildung dargestellten Polynomfunktion p größer oder gleich 4 sein muss.
[1 Punkt]
Aufgabe 4018
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil c
Der Graph der Polynomfunktion p mit \(p\left( x \right) = a \cdot {x^4} + b \cdot {x^3} + c \cdot {x^2} + d \cdot x + e\) verläuft durch die folgenden 5 Punkte:
\(\eqalign{ & A = \left( {0\left| {1,8} \right.} \right) \cr & B = \left( {0,25\left| {2,1} \right.} \right) \cr & C = \left( {0,5\left| {0,4} \right.} \right) \cr & D = (0,75\left| {0,7)} \right. \cr & E = \left( {1\left| {0,5} \right.} \right) \cr} \)
mit
x | horizontale Koordinate in Metern (m) |
p(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Stellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten dieser Polynomfunktion p auf.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Koeffizienten dieser Polynomfunktion p.
[1 Punkt]
Aufgabe 4019
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bodenunebenheiten - Aufgabe B_405
Teil d
Um die Unebenheit eines anderen Bodens zu ermitteln, soll der Punkt T bestimmt werden. Im Punkt T ist die Tangente an den Graphen von p parallel zur Geraden f (siehe nachstehende Skizze).
Es gilt:
\(\eqalign{ & p\left( x \right) = - 70,000 \cdot {x^4} + 150,000 \cdot {x^3} - 100,000 \cdot {x^2} + 17,000 \cdot x + 3,000 \cr & f\left( x \right) = - 4,046 \cdot x + 4,378 \cr} \)
mit:
x | horizontale Koordinate in Metern (m) |
p(x), f(x) | vertikale Koordinate in Millimetern (mm) |
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie eine Gleichung, mit der die x-Koordinate des Punktes T berechnet werden kann.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die x-Koordinate des Punktes T.
[1 Punkt]
Aufgabe 4020
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil a
Aus nostalgischen Gründen werden in einem kleinen Weingut Trauben der Sorte Welschriesling mit einer renovierten Handpresse gepresst. Der zylinderförmige Korb, in dem die Weintrauben gepresst werden, hat dabei die folgenden Abmessungen: Höhe h = 80 cm, Innenradius r = 42 cm.
1. Teilaufgabe - Bearbeitungszeit 11:20
Überprüfen Sie nachweislich mithilfe der Volumensformel des Drehzylinders, ob die nachstehenden Aussagen jeweils richtig sind.
[2 Punkte]
- Aussage 1: „Wäre die zylinderförmige Presse 1,6 m hoch (bei gleichem Durchmesser), so würde sie das doppelte Volumen fassen.“
- Aussage 2: „Hätte die zylinderförmige Presse einen Innenradius von 84 cm (bei gleicher Höhe), so würde sie das doppelte Volumen fassen.“
2. Teilaufgabe - Bearbeitungszeit 5:40
Der Korb ist zu 95 % mit Trauben gefüllt. Aus diesen Trauben werden 350 Liter Traubenmost gepresst.
Berechnen Sie den prozentuellen Anteil des Traubenmosts am ursprünglichen Volumen der Trauben.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4021
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil b
Weine der Sorten Zweigelt und Grüner Veltliner werden in Kisten zu 12 Flaschen und Kartons zu 6 Flaschen verkauft. Die Preise pro Flasche sind unabhängig von der Packungsgröße.
- 1 Kiste Zweigelt und 1 Karton Grüner Veltliner kosten insgesamt € 47,40.
- 2 Kisten Grüner Veltliner und 1 Karton Zweigelt kosten insgesamt € 72.
1. Teilaufgabe - Bearbeitungszeit 5:40
Erstellen Sie ein Gleichungssystem, mit dem der Preis für eine Flasche Zweigelt und der Preis für eine Flasche Grüner Veltliner berechnet werden können.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Preis für eine Flasche Zweigelt und den Preis für eine Flasche Grüner Veltliner.
[1 Punkt]
Aufgabe 4022
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinbau - Aufgabe B_412
Teil c
Der Wein wird mit einem manuellen Reihenfüller in Flaschen abgefüllt. Das Füllvolumen der Flaschen kann dabei als annähernd normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ angenommen werden. Es liegen 95 % der Füllvolumina in dem um μ symmetrischen Intervall von 995 Millilitern (ml) bis 1 015 ml.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie den Erwartungswert μ des Füllvolumens der Flaschen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Standardabweichung σ.
[1 Punkt]
Aufgabe 4025
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil a
Der Verlauf eines Lichtstrahls durch ein Glasprisma wird als Strahlengang bezeichnet. In einem Spezialglas beträgt die Lichtgeschwindigkeit 205 337 300 m/s. In einem aus diesem Glas gefertigten Prisma beträgt die Länge des Strahlengangs 5 cm.
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele Sekunden es dauert, bis ein Lichtstrahl dieses Prisma durchquert hat.
[1 Punkt]
Aufgabe 4026
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil b
Ein Strahlengang durch ein Glasprisma einer Filmkamera kann folgendermaßen dargestellt werden:
Hinweis: Die Skizze ist nicht maßstabsgetreu!
\(\eqalign{ & a = 0,50{\text{ cm}} \cr & x = 0,55{\text{ cm}} \cr & \beta = 40^\circ \cr & \gamma = 68^\circ \cr} \)
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge z des Strahlengangs.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge y des Strahlengangs.
[1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Länge x + y + z des Strahlengangs
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4027
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B-Aufgaben
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil c
Bei der Abbildung eines Gegenstands mithilfe einer Sammellinse gelten folgende Beziehungen:
\(\dfrac{B}{G} = \dfrac{b}{g}{\text{ und }}b = \dfrac{{g \cdot f}}{{g - f}}\)
mit
B | Höhe des Bildes |
G | Höhe des Gegenstands |
b | Abstand des Bildes von der Linse |
g | Abstand des Gegenstands von der Linse |
f | Brennweite der Linse |
1. Teilaufgabe - Bearbeitungszeit 5:40
Kreuzen Sie die zutreffende Aussage an.
[1 aus 5] [1 Punkt]
- Aussage 1: Wenn g = 3 · f gilt, dann ist B größer als G.
- Aussage 2: Wenn g = 3 · f gilt, dann ist B = G.
- Aussage 3: Wenn g = 2 · f gilt, dann ist B kleiner als G.
- Aussage 4: Wenn g = 2 · f gilt, dann ist B = G.
- Aussage 5: Wenn g = 2 · f gilt, dann ist B größer als G.
Aufgabe 4028
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Prismen und Linsen - Aufgabe B_411
Teil d
Ein Unternehmen fertigt Linsen aus Glas für industrielle Anwendungen. Die Dicke spezieller Linsen (gemessen in der Linsenmitte) erweist sich als annähernd normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ:
- μ = 12,000 mm
- σ = 0,060 mm
1. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie dasjenige um μ symmetrische Intervall, in dem die Dicke einer zufällig ausgewählten Linse mit einer Wahrscheinlichkeit von 90 % liegt.
[1 Punkt]
Eine Linse erreicht Präzisionsqualität, wenn die Abweichung vom Erwartungswert nicht mehr als ± 0,040 mm beträgt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie die Wahrscheinlichkeit, dass eine zufällig ausgewählte Linse Präzisionsqualität hat.
[1 Punkt]
Aufgabe 4030
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Leistungsdiagnostik im Sport - Aufgabe B_417
Teil a
Bei höherer Belastung benötigt der Körper mehr Sauerstoff und produziert als „Abfallprodukt“ Laktat. Ab einer gewissen Laktatkonzentration ist das Herz-Kreislauf-System nicht mehr in der Lage, die arbeitenden Muskeln mit genügend Sauerstoff zu versorgen. Diese Laktatkonzentration heißt anaerobe Schwelle.
Für einen bestimmten Sportler kann die Laktatkonzentration in Abhängigkeit von der Geschwindigkeit beim Laufen näherungsweise durch die Funktion f beschrieben werden:
\(f\left( x \right) = 0,0461 \cdot {e^{0,29 \cdot x}} + 0,9\)
mit
x | Geschwindigkeit beim Laufen in Kilometern pro Stunde (km/h) |
f(x) | Laktatkonzentration bei der Geschwindigkeit x in Millimol pro Liter Blut (mmol/L) |
Erreicht die Laktatkonzentration die anaerobe Schwelle, so beträgt der Steigungswinkel von f an dieser Stelle 45°.
1. Teilaufgabe - Bearbeitungszeit 5:40
Bestimmen Sie die anaerobe Schwelle dieses Sportlers.
[1 Punkt]