Österreichische AHS Matura - 2020.01.14 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1734
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Äquivalente Gleichungen
Gegeben ist die Gleichung \(\dfrac{x}{2} - 4 = 3{\text{ in }}x \in {\Bbb R}\)
- Aussage 1: \(x - 4 = 6\)
- Aussage 2: \(\dfrac{x}{2} = - 1\)
- Aussage 3: \(\dfrac{x}{2} - 3 = 4\)
- Aussage 4: \(\dfrac{{x - 8}}{2} = 3\)
- Aussage 5: \({\left( {\dfrac{x}{2} - 4} \right)^2} = 9\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden obenstehenden Gleichungen in \(x \in {\Bbb R}\) an, die zur gegebenen Gleichung äquivalent sind.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1735
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verkehrsunfallstatistik
Die nachstehenden Angaben beziehen sich auf Straßenverkehrsunfälle im Zeitraum von 2014 bis 2016.
- A ... Anzahl der Straßenverkehrsunfälle im Jahr 2014, davon a % mit Personenschaden
- B ... Anzahl der Straßenverkehrsunfälle im Jahr 2015, davon b % mit Personenschaden
- C ... Anzahl der Straßenverkehrsunfälle im Jahr 2016, davon c % mit Personenschaden
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie einen Term für die Gesamtanzahl N der Straßenverkehrsunfälle mit Personenschaden im Zeitraum von 2014 bis 2016 an.
N=
Aufgabe 1736
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Löwenrudel
Ein Rudel von Löwen besteht aus Männchen und Weibchen. Die Anzahl der Männchen in diesem Rudel wird mit m bezeichnet, jene der Weibchen mit w. Die beiden nachstehenden Gleichungen enthalten Informationen über dieses Rudel.
\(\eqalign{ & m + w = 21 \cr & 4 \cdot m + 1 = w \cr} \)
- Aussage 1: In diesem Rudel sind mehr Männchen als Weibchen.
- Aussage 2: Die Anzahl der Weibchen ist mehr als viermal so groß wie die Anzahl der Männchen.
- Aussage 3: Die Anzahl der Männchen ist um 1 kleiner als die Anzahl der Weibchen.
- Aussage 4: Insgesamt sind mehr als 20 Löwen (Männchen und Weibchen) in diesem Rudel.
- Aussage 5: Das Vierfache der Anzahl der Männchen ist um 1größer als die Anzahl der Weibchen.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden Aussagen an, die auf dieses Rudel zutreffen.
Aufgabe 1737
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Gleichung
Gegeben ist die quadratische Gleichung \({x^2} + r \cdot x + s = 0{\text{ in }}x \in {\Bbb R}{\text{ mit }}r,s \in {\Bbb R}\)
- Lösungsfall 1: Die quadratische Gleichung hat keine reelle Lösung.
- Lösungsfall 2: Die quadratische Gleichung hat nur eine reelle Lösung \(x = - \dfrac{r}{2}\)
- Lösungsfall 3: Die quadratische Gleichung hat die reellen Lösungen \({x_1} = 0{\text{ und }}{x_2} = - r\)
- Lösungsfall 4: Die quadratische Gleichung hat die reellen Lösungen \({x_1} = - \sqrt { - s} {\text{ und }}{x_2} = \sqrt { - s} \)
- Aussage A: \(\dfrac{{{r^2}}}{4} = s\)
- Aussage B: \(\dfrac{{{r^2}}}{4} - s > 0{\text{ mit }}r,s \ne 0\)
- Aussage C: \(r \in {\Bbb R},\,\,\,\,\,s > 0\)
- Aussage D: \(r = 0;\,\,\,\,\,s < 0\)
- Aussage E: \(r \ne 0;\,\,\,\,\,s = 0\)
- Aussage F: \(r = 0;\,\,\,\,\,s > 0\)
Aufgabenstellung [0 / 0,5 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ordnen Sie den vier Lösungsfällen 1, 2, 3 und 4 jeweils diejenige Aussage über die Parameter r und s (aus A bis F) zu, bei der stets der jeweilige Lösungsfall vorliegt.
Aufgabe 1738
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Gerade durch einen Punkt
Im nachstehenden Koordinatensystem ist eine Gerade g abgebildet. Die gekennzeichneten Punkte der Geraden g haben ganzzahlige Koordinaten.
Aufgabenstellung
Geben Sie eine Parameterdarstellung einer zu g parallelen Geraden h durch den Punkt (3 | –1) an. [0 / 1 Punkt]
h: X =
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1739
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Räumliches Sehen
Betrachtet man einen Gegenstand, so schließen die Blickrichtungen der beiden Augen einen Winkel ε ein. In der nachstehend dargestellten Situation hat der Gegenstand G zu den beiden Augen A1 und A2 den gleichen Abstand g. Der Augenabstand wird mit d bezeichnet.
Aufgabenstellung
Geben Sie den Abstand g in Abhängigkeit vom Augenabstand d und vom Winkel ε an. [0 / 1 Punkt]
g =
Aufgabe 1740
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gewinnfunktion
Die unten stehende Abbildung zeigt eine lineare Kostenfunktion \(K:x \to K\left( x \right)\) une eine lineare Erlösfunktion \(E:x \to E\left( x \right){\rm{ mit }}x \in \left[ {0;6} \right]\)
Für die Gewinnfunktion \(G:x \to G\left( x \right)\) gilt für alle \(x \in \left[ {0;6} \right]:\,\,\,\,\,G\left( x \right) = E\left( x \right) - K\left( x \right)\)
Aufgabenstellung
Zeichnen Sie in der nachstehenden Abbildung den Graphen von G ein. [0 / 1 Punkt]
Aufgabe 1741
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionale Zusammenhänge
Gegeben ist die Gleichung \(w = \dfrac{{y \cdot {z^2}}}{{2 \cdot x}}{\text{ mit }}w,x,y,z \in {{\Bbb R}^ + }\)
Die gegebene Gleichung beschreibt funktionale Zusammenhänge zwischen zwei Variablen, wenn die beiden anderen Variablen als konstant angenommen werden.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an. [0 / 1 Punkt]
- Aussage 1: Betrachtet man z in Abhängigkeit von x, so ist z: \(z:\,\,\,\,\,{{\Bbb R}^ + } \to {{\Bbb R}^ + },\,\,\,\,\,x \to z\left( x \right)\) eine Exponentialfunktion
- Aussage 2: Betrachtet man w in Abhängigkeit von z, so ist w: \(w:\,\,\,\,\,{{\Bbb R}^ + } \to {{\Bbb R}^ + },\,\,\,\,\,z \to w\left( z \right)\) eine quadratische Funktion
- Aussage 3: Betrachtet man w in Abhängigkeit von x, so ist w: \(w:\,\,\,\,\,{{\Bbb R}^ + } \to {{\Bbb R}^ + },\,\,\,\,\,x \to w\left( x \right)\) eine lineare Funktion
- Aussage 4: Betrachtet man y in Abhängigkeit von z, so ist y: \(y:\,\,\,\,\,{{\Bbb R}^ + } \to {{\Bbb R}^ + },\,\,\,\,\,z \to y\left( z \right)\) eine Polynomfunktion vom Grad 2
- Aussage 5: Betrachtet man x in Abhängigkeit von y, so ist x: \(x:\,\,\,\,\,{{\Bbb R}^ + } \to {{\Bbb R}^ + },\,\,\,\,\,y \to x\left( y \right)\) eine lineare Funktion
Aufgabe 1742
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph zeichnen
Von einer linearen Funktion f sind nachstehende Eigenschaften bekannt:
- Die Steigung von f ist –0,4.
- Der Funktionswert von f an der Stelle 2 ist 1.
Aufgabenstellung
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen von f auf dem Intervall [–7; 7] ein. [0 / 1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1743
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Bruttogehalt und Nettogehalt
Auf der Website des Finanzministeriums findet man einen Brutto-Netto-Rechner, der für jedes monatliche Bruttogehalt das entsprechende Nettogehalt berechnet.
Folgende Tabelle gibt Auskunft über einige Gehälter:
Bruttogehalt in € | 1 500 | 2 000 | 2 500 |
Nettogehalt in € | 1 199 | 1 483 | 1 749 |
Aufgabenstellung:
Zeigen Sie unter Verwendung der in der obigen Tabelle angeführten Werte, dass zwischen dem Bruttogehalt und dem Nettogehalt kein linearer Zusammenhang besteht. [0 / 1 Punkt]
Aufgabe 1744
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verzinsung
Ein Kapital K0 wird auf einem Sparbuch mit 1 % p. a. (pro Jahr) verzinst. Für die nachstehende Aufgabenstellung gilt die Annahme, dass allfällige Steuern oder Gebühren nicht gesondert berücksichtigt werden müssen und dass keine weiteren Einzahlungen oder Auszahlungen erfolgen.
Aufgabenstellung:
Berechnen Sie, in wie vielen Jahren sich das Kapital K0 bei gleichbleibendem Zinssatz verdoppelt. [0 / 1 Punkt]
Aufgabe 1745
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Gegeben ist eine Funktion \(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = a \cdot \sin \left( {\dfrac{{\pi \cdot x}}{b}} \right){\text{ mit }}a,b \in {R^ + }\)
Aufgabenstellung
Ergänzen Sie in der nachstehenden Abbildung a und b auf der jeweils entsprechenden Achse so, dass der abgebildete Graph dem Graphen der Funktion f entspricht. [0 / 1 Punkt]