Österreichische AHS Matura - 2019.01.15 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1662
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zahlen und Zahlenmengen
Nachstehend sind Aussagen über Zahlen und Zahlenmengen angeführt.
- Aussage 1: Es gibt mindestens eine Zahl, die in \(\mathbb{N}\) enthalten ist, nicht aber in ℤ.
- Aussage 2: \( - \sqrt 9 \) ist eine irrationale Zahl.
- Aussage 3: Die Zahl 3 ist ein Element der Menge \(\mathbb{Q}\).
- Aussage 4: \(\sqrt { - 2} \) ist in \(\mathbb{C}\) enthalten, nicht aber in \(\mathbb{R}\).
- Aussage 5: Die periodische Zahl \(1,\mathop 5\limits^ \bullet \) ist in \(\mathbb{R}\) enthalten, nicht aber in \(\mathbb{Q}\).
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1663
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Darstellung von Zusammenhängen durch Gleichungen
Viele Zusammenhänge können in der Mathematik durch Gleichungen ausgedrückt werden.
- 1. Beschreibung: a ist halb so groß wie b
- 2. Beschreibung: b ist 2% von a
- 3. Beschreibung: a ist um 2% größer als b
- 4. Beschreibung: b ist um 2% kleiner als a
- Gleichung A: \(2 \cdot a = b\)
- Gleichung B: \(2 \cdot b = a\)
- Gleichung C: \(a = 1,02 \cdot b\)
- Gleichung D: \(b = 0,02 \cdot a\)
- Gleichung E: \(1,2 \cdot b = a\)
- Gleichung F: \(b = 0,98 \cdot a\)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Ordnen Sie den vier Beschreibungen eines möglichen Zusammenhangs zweier Zahlen a und b mit \(a,b \in {{\Bbb R}^ + }\) jeweils die entsprechende Gleichung (aus A bis F) zu!
Aufgabe 1664
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichungssystem
Gegeben ist ein Gleichungssystem aus zwei linearen Gleichungen in den Variablen \(x,y \in {\Bbb R}\).
\(\eqalign{ & Gl.1:a \cdot x + y = - 2{\text{ mit }}a \in {\Bbb R} \cr & Gl.2:3 \cdot x + b \cdot y = 6{\text{ mit }}b \in {\Bbb R} \cr} \)
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Bestimmen Sie die Koeffizienten a und b so, dass das Gleichungssystem unendlich viele Lösungen hat!
Aufgabe 1665
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parallele Geraden
Gegeben sind die Parameterdarstellungen zweier Geraden
\(\eqalign{
& g:X = P + t \cdot \overrightarrow u \cr
& h:X = Q + s \cdot \overrightarrow v \cr
& s,t \in {\Bbb R}{\text{ }} \cr} \)
\(\overrightarrow u ,\overrightarrow v \ne \left( {\begin{array}{*{20}{c}}
0\\
0
\end{array}} \right)\)
Aufgabenstellung:
Welche der nachstehend angeführten Aussagen sind unter der Voraussetzung, dass die beiden Geraden zueinander parallel, aber nicht identisch sind, stets zutreffend? Kreuzen Sie die beiden zutreffenden Aussagen an!
- Aussage 1: \(P = Q\)
- Aussage 2: \(P \in h\)
- Aussage 3: \(Q \notin g\)
- Aussage 4: \(\overrightarrow u \cdot \overrightarrow v = 0\)
- Aussage 5: \(\overrightarrow u = a \cdot \overrightarrow v \) für ein \(a \in {\Bbb R}\backslash \left\{ 0 \right\}\)
Aufgabe 1666
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Beziehung zwischen Vektoren
Gegeben sind zwei Vektoren
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} {13}\\ 5 \end{array}} \right){\rm{ }}\)und \(\overrightarrow b = \left( {\begin{array}{*{20}{c}} {10 \cdot m}\\ n \end{array}} \right)\) mit \(m,n \in {\Bbb R}\backslash \left\{ 0 \right\}\)
Aufgabenstellung:
Die Vektoren a und b sollen aufeinander normal stehen. Geben Sie für diesen Fall n in Abhängigkeit von m an!
n= ___
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1667
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Viereck
Gegeben ist das nachstehende Viereck ABCD mit den Seitenlangen a, b, c und d.
Aufgabenstellung:
Zeichnen Sie in der obigen Abbildung einen Winkel φ ein, für den
Aufgabe 1668
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Funktionsgraphen
Nachstehend sind Eigenschaften von Funktionen angeführt sowie charakteristische Ausschnitte von Funktionsgraphen abgebildet.
- Eigenschaft 1: Die Funktion ist auf ihrem gesamten Definitionsbereich monoton steigend.
- Eigenschaft 2: Die Funktion ist auf ihrem gesamten Definitionsbereich negativ gekrümmt (rechtsgekrümmt).
- Eigenschaft 3: Die Funktion ist auf dem Intervall (–∞; 0) positiv gekrümmt (linksgekrümmt).
- Eigenschaft 4: Die Funktion ist auf dem Intervall (–∞; 0) monoton fallend.
Funktionsgraph A:
Funktionsgraph B:
Funktionsgraph C:
Funktionsgraph D:
Funktionsgraph E:
Funktionsgraph F:
Aufgabenstellung:
Ordnen Sie den vier Eigenschaften jeweils den passenden Graphen (aus A bis F) zu!
Aufgabe 1669
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosten und Erlös
Für ein Produkt sind die Kostenfunktion K mit \(K\left( x \right) = 2 \cdot x + 4000\) und die Erlösfunktion E mit \(E\left( x \right) = 10 \cdot x\) bekannt, wobei x die Anzahl der produzierten Mengeneinheiten ist und alle produzierten Mengeneinheiten verkauft werden. Kosten und Erlös werden jeweils in Euro angegeben. Der Schnittpunkt der beiden Funktionsgraphen ist \(S = \left( {500\left| {5000} \right.} \right)\)
Aufgabenstellung:
Interpretieren Sie die Koordinaten 500 und 5 000 des Schnittpunkts S im gegebenen Kontext!
Aufgabe 1670
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Deutung einer Gleichung
Ein mit Helium gefüllter Ballon steigt lotrecht auf. Die jeweilige Höhe des Ballons über einer ebenen Fläche kann durch eine lineare Funktion h in Abhängigkeit von der Zeit t modelliert werden. Die Höhe h(t) wird in Metern, die Zeit t in Sekunden gemessen.
Aufgabenstellung:
Deuten Sie die Gleichung \(h\left( {t + 1} \right) - h\left( t \right) = 2\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1671
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktionen dritten Grades
Eine Polynomfunktion dritten Grades ändert an höchstens zwei Stellen ihr Monotonieverhalten.
Aufgabenstellung:
Skizzieren Sie im nachstehenden Koordinatensystem den Graphen einer Polynomfunktion dritten Grades f, die an den Stellen x = –3 und x = 1 ihr Monotonieverhalten ändert!
Aufgabe 1672
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dicke einer Bleiplatte
In der Medizintechnik werden Röntgenstrahlen eingesetzt. Durch den Einbau von Bleiplatten in Schutzwanden sollen Personen vor diesen Strahlen geschützt werden. Man geht davon aus, dass pro 1 mm Dicke der Bleiplatte die Strahlungsintensität um 5 % abnimmt.
Aufgabenstellung:
Berechnen Sie die notwendige Dicke x (in mm) einer Bleiplatte, wenn die Strahlungsintensität auf 10 % der ursprünglichen Strahlungsintensität, mit der die Strahlen auf die Bleiplatte auftreffen, gesenkt werden soll!
Aufgabe 1673
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
In der unten stehenden Abbildung sind die Graphen der Funktionen f und g mit den Funktionsgleichungen
\(f\left( x \right) = \sin \left( x \right){\text{ und }}g\left( x \right) = \cos \left( x \right)\) dargestellt.
Für die in der Abbildung eingezeichneten Stellen a und b gilt: cos(a) = sin(b).
Aufgabenstellung:
Bestimmen Sie \(k \in {\Bbb R}\) so, dass \(b - a = k \cdot \pi \)