Österreichische AHS Matura - 2015.05.11 - 24 Typ I Beispiele - 120 Minuten Rechenzeit
Aufgabe 1421
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 1. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Taschengeld
Tim hat x Wochen lang wöchentlich € 8, y Wochen lang wöchentlich € 10 und z Wochen lang wöchentlich € 12 Taschengeld erhalten.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie in Worten an, was in diesem Zusammenhang durch den Term
\(\dfrac{{8x + 10y + 12z}}{{x + y + z}}\)
dargestellt wird!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 2. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fahrenheit und Celsius
Während man in Europa die Temperatur in Grad Celsius (°C) angibt, verwendet man in den USA die Einheit Grad Fahrenheit (°F). Zwischen der Temperatur TF in °F und der Temperatur TC in °C besteht ein linearer Zusammenhang. Für die Umrechnung von °F in °C gelten folgende Regeln:
- 32 °F entsprechen 0 °C.
- Eine Temperaturzunahme um 1°F entspricht einer Zunahme der Temperatur um 5/9 °C
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie eine Gleichung an, die den Zusammenhang zwischen der Temperatur TF (°F, Grad Fahrenheit) und der Temperatur TC (°C, Grad Celsius) beschreibt!
Aufgabe 1419
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 3. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gehälter
Die Gehälter der 8 Mitarbeiter/innen eines Kleinunternehmens sind im Vektor \(G = \left( {\begin{array}{*{20}{c}} {{G_1}}\\ {...}\\ {{G_8}} \end{array}} \right)\) dargestellt.
Aufgabenstellung [0 / 1 P.] – Bearbeitungszeit < 5 Minuten
Geben Sie an, was der Ausdruck (das Skalarprodukt) \(G \cdot \left( {\begin{array}{*{20}{r}} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array}} \right)\) in diesem Kontext bedeutet!
Aufgabe 1418
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 4. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameterdarstellung einer Geraden
Die zwei Punkte A = (–1| –6|2) und B = (5| –3|–3) liegen auf einer Geraden \(g{\text{ in }}{{\Bbb R}^3}\)
Aufgabenstellung:
Geben Sie eine Parameterdarstellung dieser Geraden g unter Verwendung der konkreten Koordinaten der Punkte A und B an!
g: X =
Aufgabe 1417
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vektoren
Gegeben sind zwei Vektoren \(\overrightarrow a = \left( {\begin{array}{*{20}{c}} 2\\ 3 \end{array}} \right)\) und \(\overrightarrow b = \left( {\begin{array}{*{20}{c}} {{b_1}}\\ { - 4} \end{array}} \right)\)
Aufgabenstellung
Bestimmen Sie die unbekannte Koordinate b1 so, dass die beiden Vektoren \(\overrightarrow a\) und \(\overrightarrow b\) normal aufeinander stehen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1416
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 6. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sehwinkel
Der Sehwinkel ist derjenige Winkel, unter dem ein Objekt von einem Beobachter wahrgenommen wird. Die nachstehende Abbildung verdeutlicht den Zusammenhang zwischen dem Sehwinkel α, der Entfernung r und der realen („wahren“) Ausdehnung g eines Objekts in zwei Dimensionen.
Quelle: http://upload.wikimedia.org/wikipedia/commons/d/d3/ScheinbareGroesse.png [22.01.2015] (adaptiert)
Aufgabenstellung:
Geben Sie eine Formel an, mit der die reale Ausdehnung g dieses Objekts mithilfe von \(\alpha\) und r berechnet werden kann!
g =
Aufgabe 1415
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 7. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Volumen eines Drehkegels
Das Volumen V eines Drehkegels hangt vom Radius r und der Hohe h ab. Es wird durch die Formel \(V = \dfrac{1}{3} \cdot {r^2} \cdot \pi \cdot h\) beschrieben.
Eine der untenstehenden Abbildungen stellt die Abhängigkeit des Volumens eines Drehkegels vom Radius bei konstanter Höhe dar.
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
- Aussage 6:
Aufgabenstellung:
Eine der obenstehenden Abbildungen stellt die Abhängigkeit des Volumens eines Drehkegels vom Radius bei konstanter Höhe dar. Kreuzen Sie die entsprechende Abbildung an!
Aufgabe 1414
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lorenz-Kurve
Die in der unten stehenden Abbildung dargestellte Lorenz-Kurve kann als Graph einer Funktion f verstanden werden, die gewissen Bevölkerungsanteilen deren jeweiligen Anteil am Gesamteinkommen zuordnet.
Dieser Lorenz-Kurve kann man z. B. entnehmen, dass die einkommensschwächsten 80 % der Bevölkerung über ca. 43 % des Gesamteinkommens verfugen. Das bedeutet zugleich, dass die einkommensstärksten 20 % der Bevölkerung über ca. 57 % des Gesamteinkommens verfugen.
- Aussage 1: Die einkommensstärksten 10 % der Bevölkerung verfugen über ca. 60 % des Gesamteinkommens.
- Aussage 2: Die einkommensstärksten 40 % der Bevölkerung verfugen über ca. 90 % des Gesamteinkommens.
- Aussage 3: Die einkommensschwächsten 40 % der Bevölkerung verfugen über ca. 10 % des Gesamteinkommens.
- Aussage 4: Die einkommensschwächsten 60 % der Bevölkerung verfugen über ca. 90 % des Gesamteinkommens.
- Aussage 5: Die einkommensschwächsten 90 % der Bevölkerung verfugen über ca. 60 % des Gesamteinkommens.
Aufgabenstellung:
Kreuzen Sie die beiden für die oben dargestellte Lorenz-Kurve zutreffenden Aussagen an!
Aufgabe 1413
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Den Graphen einer Polynomfunktion skizzieren
Eine Polynomfunktion f hat folgende Eigenschaften:
- Die Funktion ist für x ≤ 0 streng monoton steigend.
- Die Funktion ist im Intervall [0; 3] streng monoton fallend.
- Die Funktion ist für x ≥ 3 streng monoton steigend.
- Der Punkt P = (0|1) ist ein lokales Maximum (Hochpunkt).
- Die Stelle 3 ist eine Nullstelle.
Aufgabenstellung:
Erstellen Sie anhand der gegebenen Eigenschaften eine Skizze eines möglichen Funktionsgraphen von f im Intervall [–2; 4]!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1412
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Produktionskosten
Ein Betrieb gibt für die Abschätzung der Gesamtkosten K(x) für x produzierte Stück einer Ware folgende Gleichung an: \(K\left( x \right) = 25 \cdot x + 12000\)
Aufgabenstellung:
Interpretieren Sie die beiden Zahlenwerte 25 und 12.000 in diesem Kontext!
Aufgabe 1411
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Technetium
Für eine medizinische Untersuchung wird das radioaktive Isotop \({}_{43}^{99m}TC\) (Technetium) künstlich hergestellt. Dieses Isotop hat eine Halbwertszeit von 6,01 Stunden.
Aufgabenstellung:
Geben Sie an, wie lange es dauert, bis von einer bestimmten Ausgangsmenge Technetiums nur noch ein Viertel vorhanden ist!
Aufgabe 1410
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 11. Mai 2015 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sinusfunktion
Die nachstehende Abbildung zeigt den Graphen einer Funktion f mit \(f\left( x \right) = a \cdot \sin \left( {b \cdot x} \right)\) mit \(a,b \in {\Bbb R}\)
Aufgabenstellung:
Geben Sie die für den abgebildeten Graphen passenden Parameterwerte von f an!
a =
b =