BMBWF - WS 2.1 .. WS 2.4 Wahrscheinlichkeitsrechnung
Aufgabe 1304
AHS - 1_304 & Lehrstoff: WS 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ereignisse
In einer Schachtel befinden sich 3 rote Kugeln, 20 grüne Kugeln und 47 blaue Kugeln. Die Kugeln sind – abgesehen von ihrer Farbe – nicht unterscheidbar. Es werden nacheinander 3 Kugeln nach dem Zufallsprinzip entnommen, wobei diese nach jedem Zug wieder zurückgelegt werden.
Aufgabenstellung
Der Grundraum dieses Zufallsexperiments ist die Menge aller möglichen Farbtripel (x; y; z). x, y und z nehmen dabei die Buchstaben r, g oder b – entsprechend der Farbe der Kugeln – an. Für das Ereignis E gilt: Es werden keine blauen Kugeln gezogen. Geben Sie alle Elemente des Ereignisses E an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1305
AHS - 1_305 & Lehrstoff: WS 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Schülerinnenbefragung
In einer Schule wird unter den Mädchen eine Umfrage durchgeführt. Dazu werden pro Klasse zwei Schülerinnen zufällig für ein Interview ausgewählt. Eva und Sonja gehen in die 1A. Für das Ereignis E1 gilt: Eva und Sonja werden für das Interview ausgewählt.
- Aussage 1: Nur Eva wird ausgewählt.
- Aussage 2: Keines der beiden Mädchen wird ausgewählt.
- Aussage 3: Mindestens eines der beiden Mädchen wird ausgewählt.
- Aussage 4: Nur Sonja wird ausgewählt.
- Aussage 5: Höchstens eines der beiden Mädchen wird ausgewählt.
- Aussage 6: Genau eines der beiden Mädchen wird ausgewählt.
Aufgabenstellung
Welche der nachstehenden Aussagen beschreibt das Gegenereignis E2? (Das Gegenereignis E2 enthält diejenigen Elemente des Grundraums, die nicht Elemente von E1 sind.) Kreuzen Sie die zutreffende Aussage an!
Aufgabe 1111
AHS - 1_111 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfelergebnisse
Zwei Spielwürfel (6 Seiten, beschriftet mit 1 bis 6 Augen) werden geworfen und die Augensumme wird ermittelt.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!
Die Wahrscheinlichkeit, das Ereignis „Augensumme 6“ zu würfeln, ist _____1______ Wahrscheinlichkeit, das Ereignis „Augensumme 9“ zu würfeln, weil ______2______ .
1 | |
größer als die | A |
kleiner als die | B |
gleich der | C |
2 | |
6 kleiner als 9 ist und das Ereignis „Augensumme 6“ somit seltener eintritt | I |
die Wahrscheinlichkeit beide Male 5/36 beträgt | II |
es nur vier Möglichkeiten gibt, die Augensumme „9“ zu würfeln, aber fünf Möglichkeiten, die Augensumme „6“ zu würfeln | III |
Aufgabe 1232
AHS - 1_232 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Augensumme
Zwei herkömmliche Spielwürfel werden geworfen und die Augensumme wird ermittelt.
Aufgabenstellung
Untersuchen Sie, welches der Ereignisse „Augensumme 6“ oder „Augensumme 9“ wahrscheinlicher ist, und begründen Sie Ihre Aussage!
Aufgabe 1233
AHS - 1_233 & Lehrstoff: WS 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reißnagel
Wenn man einen Reißnagel fallen lässt, bleibt dieser auf eine der beiden dargestellten Arten liegen.
Aufgabenstellung:
Beschreiben Sie eine Methode, wie man die Wahrscheinlichkeiten für die beiden Fälle herausfinden kann!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1014
AHS - 1_014 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahrscheinlichkeit eines Defekts
Eine Maschine besteht aus den drei Bauteilen A, B und C. Diese haben die im nachstehenden Modell eingetragenen, voneinander unabhängigen Defekthäufigkeiten. Eine Maschine ist defekt, wenn mindestens ein Bauteil defekt ist.
Aufgabenstellung:
Berechnen Sie die Wahrscheinlichkeit \(P\left( {X \geqslant 2} \right)\), dass bei einer Maschine zwei oder mehr Bauteile defekt sind
Aufgabe 1051
AHS - 1_051 & Lehrstoff: AG 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kugelschreiber
Ein Kugelschreiber besteht aus zwei Bauteilen, der Mine (M) und dem Gehäuse mit dem Mechanismus (G). Bei der Qualitätskontrolle werden die Kugelschreiber einzeln entnommen und auf ihre Funktionstüchtigkeit hin getestet. Ein Kugelschreiber gilt als defekt, wenn mindestens ein Bauteil fehlerhaft ist.Im nachstehenden Baumdiagramm sind alle möglichen Fälle für defekte und nicht defekte Kugelschreiber aufgelistet.
A | \({p_1} = 0,95 \cdot 0,92\) |
B | \({p_2} = 0,05 \cdot 0,08 + 0,95 \cdot 0,08\) |
C | \({p_3} = 0,05 + 0,92\) |
D | \({p_4} = 0,05 + 0,95 \cdot 0,08\) |
E | \({p_5} = 0,05 \cdot 0,92\) |
F | \({p_6} = 1 - 0,05 \cdot 0,08\) |
Aufgabenstellung:
Ordnen Sie den Ereignissen E1, E2, E3 bzw. E4 die entsprechende Wahrscheinlichkeit p1, p2, p3, p4, p5 oder p6 (aus A bis F) zu!
Deine Antwort | |
E1: Eine Mine ist defekt und das Gehäuse ist in Ordnung. | |
E2: Ein Kugelschreiber ist defekt. | |
E3: Höchstens ein Teil ist defekt. | |
E4: Ein Kugelschreiber ist nicht defekt. |
Aufgabe 1141
AHS - 1_141 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
FSME-Infektion
Infizierte Zecken können durch einen Stich das FSME-Virus (Frühsommer-Meningoenzephalitis) auf den Menschen übertragen. In einem Risikogebiet sind etwa 3 % der Zecken FSME-infiziert. Die FSME-Schutzimpfung schützt mit einer Wahrscheinlichkeit von 98 % vor einer FSME-Erkrankung.
Aufgabenstellung:
Eine geimpfte Person wird in diesem Risikogebiet von einer Zecke gestochen. Berechnen Sie die Wahrscheinlichkeit, dass diese Person durch den Zeckenstich an FSME erkrankt!
Aufgabe 1144
AHS - 1_144 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Würfel
Ein idealer sechsseitiger Würfel mit den Augenzahlen 1 bis 6 wird einmal geworfen.
A | 1/3 |
B | 1/6 |
C | 1/2 |
D | 1 |
E | 5/6 |
F | 2/3 |
Aufgabenstellung:
Ordnen Sie den Fragestellungen in der linken Spalte die passenden Wahrscheinlichkeiten (aus A bis F) in der rechten Spalte zu!
- Fragestellung 1: Wie groß ist die Wahrscheinlichkeit, dass eine gerade Zahl gewürfelt wird?
- Fragestellung 2: Wie groß ist die Wahrscheinlichkeit, dass eine Zahl größer als 4 gewürfelt wird?
- Fragestellung 3: Wie groß ist die Wahrscheinlichkeit, dass eine Zahl kleiner als 2 gewürfelt wird.
- Fragestellung 4: Wie groß ist die Wahrscheinlichkeit, dass eine Zahl größer als 1 und kleiner als 6 gewürfelt wird?
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1185
AHS - 1_185 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Laplace-Experiment
In einer Schachtel befinden sich rote, blaue und gelbe Wachsmalstifte. Ein Stift wird zufällig entnommen, dessen Farbe notiert und der Stift danach zurückgelegt. Dann wird das Experiment wiederholt. Beobachtet wird, wie oft bei zweimaligem Ziehen ein gelber Stift entnommen wurde. Die Werte der Zufallsvariablen X beschreiben die Anzahl x der gezogenen gelben Stifte. Die nachstehende Tabelle stellt die Wahrscheinlichkeitsverteilung der Zufallsvariablen X dar.
x | P(X=x) |
0 | \(\dfrac{4}{9}\) |
1 | \(\dfrac{4}{9}\) |
2 | \(\dfrac{1}{9}\) |
- Aussage 1: Die Wahrscheinlichkeit, mindestens einen gelben Stift zu ziehen, ist \(\dfrac{4}{9}\)
- Aussage 2: Die Wahrscheinlichkeit, höchstens einen gelben Stift zu ziehen, ist \(\dfrac{4}{9}\)
- Aussage 3: Die Wahrscheinlichkeit, nur rote oder blaue Stifte zu ziehen, ist \(\dfrac{4}{9}\)
- Aussage 4: Die Wahrscheinlichkeit, keinen oder einen gelben Stift zu ziehen, ist \(\dfrac{4}{9}\)
- Aussage 5: Die Wahrscheinlichkeit, dass mehr als ein gelber Stift gezogen wird, ist größer als 10 %.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1186
AHS - 1_186 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Laplace-Wahrscheinlichkeit
In einer Schachtel befinden sich ein roter, ein blauer und ein gelber Wachsmalstift. Ein Stift wird zufällig entnommen, dessen Farbe notiert und der Stift danach zurückgelegt. Dann wird das Experiment wiederholt. Beobachtet wird, wie oft bei zweimaligem Ziehen ein gelber Stift entnommen wurde. Die Werte der Zufallsvariablen X beschreiben die Anzahl der gezogenen gelben Stifte.
- Aussage 1: \(P\left( {X = 0} \right) > P\left( {X = 1} \right)\)
- Aussage 2: \(P\left( {X = 2} \right) = \dfrac{1}{9}\)
- Aussage 3: \(P\left( {X \leqslant 2} \right) = \dfrac{8}{9}\)
- Aussage 4: \(P\left( {X > 0} \right) = \dfrac{5}{9}\)
- Aussage 5: \(P\left( {X < 3} \right) = 1\)
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1236
AHS - 1_236 & Lehrstoff: WS 2.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reihenfolge
Für eine Abfolge von fünf verschiedenen Bildern gibt es nur eine richtige Reihung. Diese Bilder werden gemischt und, ohne sie anzusehen, in einer Reihe aufgelegt.
Aufgabenstellung
Bestimmen Sie die Wahrscheinlichkeit P (in %) dafür, dass die richtige Reihenfolge erscheint!