Werbung
BMBWF - FA 4.1 .. FA 4.4: Polynomfunktionen
Aufgabe 1040
AHS - 1_040 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Grad einer Polynomfunktion
Gegeben sind Ausschnitte der Graphen von fünf Polynomfunktionen f1 bis f5. Die Ausschnitte enthalten alle Extrem- und Wendepunkte der Graphen.
Zum weiterlesen bitte Aufklappen:
- Aussage 1: Die Polynomfunktion f1 hat den Grad 2.
- Aussage 2: Die Polynomfunktion f2 hat den Grad 2.
- Aussage 3: Die Polynomfunktion f3 hat den Grad 4.
- Aussage 4: Die Polynomfunktion f4 hat den Grad 3.
- Aussage 5: Die Polynomfunktion f5 hat den Grad 3.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) zum Grad an!
Werbung
maths2mind
Kreditkarte? - Braucht man nicht!
Kostenpflichtige Pakete? Gibt es nicht!
Nach der Prüfung genießt du mit dem gesparten Geld deinen Erfolg

Aufgabe 1103
AHS - 1_103 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Quadratische Funktion
Eine quadratische Funktion hat die Funktionsgleichung \(f\left( x \right) = a{x^2} + bx + c{\text{ mit }}a,\,\,b,\,\,c \in \mathbb{R}{\text{ und }}a \ne 0\). Ihr Graph ist eine Parabel.
Eigenschaft A | Der Funktionsgraph hat keine Nullstelle. |
Eigenschaft B | Der Graph hat mindestens einen Schnittpunkt mit der x-Achse. |
Eigenschaft C | Der Scheitelpunkt der Parabel ist ein Hochpunkt. |
Eigenschaft D | Der Scheitelpunkt der Parabel ist ein Tiefpunkt. |
Eigenschaft E | Der Graph der Funktion ist symmetrisch zur x-Achse. |
Eigenschaft F | Der Graph der Funktion ist symmetrisch zur y-Achse. |
Aufgabenstellung:
Ordnen Sie den vorgegebenen Bedingungen für a, b und c die daraus jedenfalls resultierende Eigenschaft (aus A bis F) zu!
Aussage | Deine Antwort |
\(a < 0\) | |
\(a > 0\) | |
\(c = 0\) | |
\(b = 0\) |
Aufgabe 1123
AHS - 1_123 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktion
Es sind die Graphen von vier Polynomfunktionen gegeben
Funktion A | \(f\left( x \right) = {x^2} - 2x\) |
Funktion B | \(f\left( x \right) = - {x^3} + {x^2} + 2x\) |
Funktion C | \(f\left( x \right) = {x^2} + 2x - 1\) |
Funktion D | \(f\left( x \right) = - {x^4} + 4{x^2}\) |
Funktion E | \(f\left( x \right) = {x^4} - 4{x^3}\) |
Funktion F | \(f\left( x \right) = {x^3} - 2{x^2} + 1\) |
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den obigen Graphen jeweils die entsprechende Funktionsgleichung (aus A bis F) zu!
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Aufgabe 1158
AHS - 1_158 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen von Polynomfunktionen
Gegeben ist eine Polynomfunktion f dritten Grades.
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
- Graph 5:
Aufgabenstellung:
Kreuzen Sie diejenige(n) Abbildung(en) an, die einen möglichen Funktionsgraphen von f zeigt/zeigen!
Aufgabe 1269
AHS - 1_269 & Lehrstoff: FA 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parabel
Der Graph einer Polynomfunktion zweiten Grades mit \(f\left( x \right) = a \cdot {x^2} + b \cdot x + c\) ist eine Parabel.
- Aussage 1: \(a < 0\)
- Aussage 2: \(a > 0\)
- Aussage 3: \(b = 0\)
- Aussage 4: \(b < 0\)
- Aussage 5: \(c = 0\)
Welche Bedingungen müssen die Koeffizienten a, b und c jedenfalls erfüllen, damit die Parabel (so wie in der Skizze) nach unten offen ist und ihren Scheitel auf der y-Achse hat?
Aufgabenstellung
Kreuzen Sie die beiden zutreffenden Aussagen an!
Werbung
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1695
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 08. Mai 2019 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Verlauf einer Polynomfunktion vierten Grades
Es gibt Polynomfunktionen vierten Grades, die genau drei Nullstellen x1, x2 und x3 mit \({x_1},{x_2},{x_3} \in {\Bbb R}{\text{ und }}{x_1} < {x_2} < {x_3}\) haben.
Aufgabenstellung:
Skizzieren Sie im nachstehenden Koordinatensystem im Intervall [–4; 4] den Verlauf des Graphen einer solchen Funktion f mit allen drei Nullstellen im Intervall [–3; 3]!
Aufgabe 1288
AHS - 1_288 & Lehrstoff: FA 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Skalierung der Achsen
Die unten stehende Grafik zeigt einen Ausschnitt des Graphen einer Polynomfunktion f vom Grad 3. In der zugehörenden Wertetabelle sind die Koordinaten einzelner Punkte angeführt.
x | y |
-4 | 5,06 |
-3 | 2 |
-2 | 0,44 |
-1 | 0 |
0 | 0,31 |
1 | 1 |
2 | 1,69 |
3 | 2 |
4 | 1,56 |
5 | 0 |
Aufgabenstellung:
Tragen Sie die Skalierung der Achsen so ein, dass eine Übereinstimmung mit den Werten der Tabelle und der Grafik gegeben ist! Zeichnen Sie dazu auf jeder Achse zumindest zwei ganzzahlige Werte ein!
Aufgabe 1289
AHS - 1_289 & Lehrstoff: FA 4.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang Tabelle – Graph
Von Polynomfunktionen f mit \(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} {\text{ mit }}n \in {\Bbb N}\) kennt man die Funktionswerte f(x) an einigen Stellen x.
- Graph A:
- Graph B:
- Graph C:
- Graph D:
- Graph E:
- Graph F:
- Wertetabelle 1:
x | f1(x) |
-3 | 4 |
-1 | 0 |
1 | 2 |
- Wertetabelle 2:
x | f2(x) |
-2 | -2 |
0 | 0 |
2 | -2 |
- Wertetabelle 3:
x | f3(x) |
0 | 0 |
3 | 6 |
4 | 0 |
- Wertetabelle 4:
x | f4(x) |
-3 | 2 |
-1 | 0 |
3 | 2 |
Aufgabenstellung:
Ordnen Sie den vier Tabellen jeweils einen möglichen Graphen (aus A bis F) richtig zu!
Deine Antwort | |
Wertetabelle 1 | |
Wertetabelle 2 | |
Wertetabelle 3 | |
Wertetabelle 4 |
Aufgabe 1270
AHS - 1_270 & Lehrstoff: FA 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Nullstellen
Gegeben ist die Funktion g mit der Gleichung \(g\left( x \right) = 2 - \dfrac{{{x^2}}}{8}\)
Aufgabenstellung
Berechnen Sie alle Werte von x, für die g(x) = 0 gilt!
Werbung
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1317
AHS - 1_317 & Lehrstoff: FA 4.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionswert bestimmen
Der Graph einer Polynomfunktion f dritten Grades hat im Ursprung einen Wendepunkt und geht durch den Punkt P = (1|2).
Aufgabenstellung
Geben Sie den Funktionswert an der Stelle x = –1 an!
Aufgabe 1555
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Negative Funktionswerte
Gegeben ist die Gleichung einer reellen Funktion f mit \(f\left( x \right) = {x^2} - x - 6\). Einen Funktionswert f(x) nennt man negativ, wenn f(x) < 0 gilt.
Aufgabenstellung:
Bestimmen Sie alle x ∈ ℝ, deren zugehöriger Funktionswert f(x) negativ ist!
Aufgabe 1019
AHS - 1_019 & Lehrstoff: FA 4.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Polynomfunktionen
Die folgenden Aussagen beschreiben Eigenschaften von Polynomfunktionen f mit \(f\left( x \right) = \sum\limits_{i = 0}^n {{a_i} \cdot {x^i}} {\text{ mit }}n \in \mathbb{N}\)
- Aussage 1: Jede Polynomfunktion dritten Grades hat genau eine Wendestelle.
- Aussage 2: Jede Polynomfunktion vierten Grades hat mindestens eine Nullstelle.
- Aussage 3: Jede Polynomfunktion, die zwei lokale Extremstellen hat, ist mindestens vom Grad 3.
- Aussage 4: Jede Polynomfunktion, die genau zwei lokale Extremstellen hat, hat mindestens eine Wendestelle.
- Aussage 5: Jede Polynomfunktion, deren Grad größer als 3 ist, hat mindestens eine lokale Extremstelle.
Aufgabenstellung:
Kreuzen Sie die zutreffende(n) Aussage(n) an!