Werbung
BMBWF - FA 3.1 .. FA 3.4: Potenzfunktionen
Aufgabe 1064
AHS - 1_064 & Lehrstoff: FA 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgraphen zuordnen
Den vier Gleichungen von Potenzfunktionen stehen nachfolgende sechs Graphen gegenüber.
Deine Antwort | |
\(y = - {x^2} + 2\) | |
\(y = {\left( {x - 2} \right)^2}\) | |
\(y = {\left( {x + 2} \right)^{ - 1}}\) | |
\(y = 2 \cdot {x^{ - 2}}\) |
Zum Weiterlesen bitte ausklappen:
- Graph A:
- Graph B:
- Graph C:
- Graph D:
- Graph E:
- Graph F:
Aufgabenstellung:
Ordnen Sie den jeweiligen Funktionsgleichungen die zugehörigen Funktionsgraphen (aus A bis F) zu!
Werbung
Schon den nächsten Urlaub im Süden geplant?
Schnell noch kostenlos auf die Prüfung vorbereiten!
Nach der Prüfung den Erfolg genießen...

Aufgabe 1264
AHS - 1_264 & Lehrstoff: FA 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgraph
Gegeben ist die Funktion g mit der Gleichung \(g\left( x \right) = 2 - \dfrac{{{x^2}}}{8}\)
Aufgabenstellung
Zeichnen Sie den Graphen der Funktion g!
Aufgabe 1265
AHS - 1_265 & Lehrstoff: FA 3.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktionsgleichungen zuordnen
Gegeben sind sechs Funktionsgleichungen und vier Graphen von Potenzfunktionen.
A | \(f\left( x \right) = {x^2} + 1\) |
B | \(f\left( x \right) = {x^2} - 1\) |
C | \(f\left( x \right) = - {x^2} + 1\) |
D | \(f\left( x \right) = {x^{ - 2}} + 1\) |
E | \(f\left( x \right) = {x^{ - 2}} - 1\) |
F | \(f\left( x \right) = - {x^{ - 2}}\) |
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabenstellung:
Ordnen Sie den vier Graphen jeweils die entsprechende Funktionsgleichung (aus A bis F) zu!
Deine Antwort | |
Graph 1 | |
Graph 2 | |
Graph 3 | |
Graph 4 |
Aufgabe 1341
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer quadratischen Funktion
Im nachfolgenden Koordinatensystem ist der Graph einer quadratischen Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b{\text{ mit }}a,b \in {\Bbb R}\) dargestellt.
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b! Die für die Berechnung relevanten Punkte mit ganzzahligen Koordinaten können dem Diagramm entnommen werden.
a =
b =
Aufgabe 1437
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 21.September 2015 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktion
In der nachstehenden Abbildung ist der Graph einer Potenzfunktion f vom Typ \(f\left( x \right) = a \cdot {x^z}\) mit \(a \in {\Bbb R};\,\,\,a \ne 0;\,\,\,z \in {\Bbb Z}\) dargestellt.
- Aussage 1: \(f\left( x \right) = 2 \cdot {x^{ - 4}}\)
- Aussage 2: \(f\left( x \right) = - {x^{ - 2}}\)
- Aussage 3: \(f\left( x \right) = - {x^2}\)
- Aussage 4: \(f\left( x \right) = - {x^{ - 1}}\)
- Aussage 5: \( f\left( x \right) = {x^{ - 2}}\)
- Aussage 6: \(f\left( x \right) = {x^{ - 1}}\)
Aufgabenstellung:
Eine der obenstehenden Gleichungen ist eine Gleichung dieser Funktion f. Kreuzen Sie die zutreffende Gleichung an!
Werbung
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1484
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktionen
Gegeben sind die Graphen von vier verschiedenen Potenzfunktionen f mit \(f\left( x \right) = a \cdot {x^z}\) sowie sechs Bedingungen für den Parameter a und den Exponenten z. Dabei ist a eine reelle, z eine natürliche Zahl.
Aussage A | \(a > 0,\,\,z = 1\) |
Aussage B | \(a > 0,\,\,z = 2\) |
Aussage C | \(a > 0,\,\,z = 3\) |
Aussage D | \(a < 0,\,\,z = 1\) |
Aussage E | \(a < 0,\,\,z = 2\) |
Aussage F | \(a < 0,\,\,z = 3\) |
Aufgabenstellung:
Ordnen Sie den vier Graphen 1..4 jeweils die entsprechende Aussage (aus A bis F) für den Parameter a und den Exponenten z der Funktionsgleichung zu!
- Graph 1:
- Graph 2:
- Graph 3:
- Graph 4:
Aufgabe 1122
AHS - 1_122 & Lehrstoff: FA 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktion
Von einer Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^2} + b\) ist der Graph gegeben:
Aufgabenstellung:
Ermitteln Sie die Werte der Parameter a und b!
Aufgabe 1316
AHS - 1_316 & Lehrstoff: FA 3.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Punkte einer Wurzelfunktion
Eine Wurzelfunktion kann durch die Funktionsgleichung \(f\left( x \right) = a \cdot \sqrt x + b\) mit \({\text{a}}{\text{,b}} \in {\Bbb R}\) festgelegt werden.
- Aussage 1: \({P_1} = \left( { - 1\left| a \right.} \right)\)
- Aussage 2: \({P_2} = \left( {0\left| b \right.} \right)\)
- Aussage 3: \({P_3} = \left( {a\left| b \right.} \right)\)
- Aussage 4: \({P_4} = \left( {b\left| {a \cdot b} \right.} \right) \)
- Aussage 5: \({P_5} = \left( {1\left| {a + b} \right.} \right)\)
Aufgabenstellung
Welche der nachstehenden Punkte liegen jedenfalls (bei jeder beliebigen Wahl von a und b) auf dem Graphen der Funktion f ? Kreuzen Sie die beiden entsprechenden Punkte an!
Aufgabe 1532
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Funktion
In der nachstehenden Abbildung ist der Graph einer Funktion f mit \(f(x) = {x^{\dfrac{1}{2}}} + b\) und \((a,b \in {\Bbb R},a \ne 0)\) dargestellt. Die Koordinaten der hervorgehobenen Punkte des Graphen der Funktion sind ganzzahlig.
Aufgabenstellung:
Geben Sie die Werte von a und b an!
Werbung
Versteh' ich nicht - Gibt's nicht!
Frage kostenlos per eMail unser Supportteam
Damit niemand mehr bei Mathe in's Schwimmen kommt

Aufgabe 1622
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2018 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graphen quadratischer Funktionen
Die nachstehende Abbildung zeigt die Graphen quadratischer Funktionen f1, f2 und f3 mit den Gleichungen \({f_i}\left( x \right) = {a_i} \cdot {x^2} + {b_i}\) wobei gilt: \({a_i},{b_i} \in {\Bbb R};\,\,\,\,\,i \in \left\{ {1,2,3} \right\}\)
Aufgabenstellung
Ordnen Sie die Parameterwerte ai und bi jeweils der Größe nach, beginnend mit dem kleinsten!
- Parameterwerte ai: _______ < _______ < _______
- Parameterwerte bi: _______ < _______ < _______
Aufgabe 1790
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Potenzfunktion
Gegeben ist eine Potenzfunktion
\(f:{\Bbb R}\backslash \left\{ 0 \right\} \to {\Bbb R}{\text{ mit }}f\left( x \right) = \dfrac{a}{{{x^2}}}{\text{ mit }}a \in {\Bbb R}\backslash \left\{ 0 \right\}\)
Aufgabenstellung:
Kreuzen Sie die beiden Aussagen an, die auf die Funktion f auf jeden Fall zutreffen.
- Aussage 1: \(f\left( {\dfrac{1}{a}} \right) = 1\)
- Aussage 1: \(f\left( {x + 1} \right) = \dfrac{a}{{{x^2} - 2 \cdot x + 1}}\)
- Aussage 1: \(f\left( {2 \cdot x} \right) = \dfrac{a}{{4 \cdot {x^2}}}\)
- Aussage 1: \(f\left( {2 \cdot a} \right) = \dfrac{1}{{2 \cdot a}}\)
- Aussage 1: \(f\left( { - x} \right) = f\left( x \right)\)
[0 / 1 Punkt]
Aufgabe 1267
AHS - 1_267 & Lehrstoff: FA 3.3
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wirkung der Parameter
Gegeben ist eine Potenzfunktion g mit der Gleichung \(g\left( x \right) = c \cdot {x^2} + d\) mit c < 0 und d > 0
- Aussage 1: g schneidet die y-Achse im Punkt P = (d | 0).
- Aussage 2: g besitzt zwei Nullstellen.
- Aussage 3: Je größer d ist, umso steiler verläuft der Graph von g.
- Aussage 4: Je kleiner c ist, umso flacher verläuft der Graph von g.
- Aussage 5: g besitzt einen Hochpunkt.
Aufgabenstellung
Kreuzen Sie die beiden für g zutreffenden Aussagen an!