Werbung
BMBWF - FA 2.1 .. FA 2.6: Lineare Funktionen
Aufgabe 1101
AHS - 1_101 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Umrechnungsformel für Fahrenheit
Temperaturen werden bei uns in °C (Celsius) gemessen; in einigen anderen Ländern ist die Messung in °F (Fahrenheit) üblich. Eine Zunahme um 1 °C bedeutet eine Zunahme um \(\dfrac{9}{5}^\circ F\). Eine Temperatur von 50 °C entspricht einer Temperatur von 122 °F. Die Funktion f soll der Temperatur in °C die Temperatur in °F zuordnen.
Aufgabenstellung:
Bestimmen Sie den entsprechenden Funktionsterm, wenn x die Temperatur in °C und f(x) die Temperatur in °F sein soll!
Werbung
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1253
AHS - 1_253 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Funktion zeichnen
Aufgabenstellung
Zeichnen Sie in das nachstehende Koordinatensystem den Graphen einer linearen Funktion mit der Gleichung \(f\left( x \right) = k \cdot x + d\) ein, für deren Parameter \(k = - \dfrac{2}{3}{\text{ }}\) und \(d > 0\) die Bedingungen gelten!
Aufgabe 1254
AHS - 1_254 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph einer Funktion zeichnen
Gegeben sind fünf Abbildungen:
- Aussage 1:
- Aussage 2:
- Aussage 3:
- Aussage 4:
- Aussage 5:
Aufgabenstellung
Welche Abbildungen stellen einen Graphen von einer linearen Funktion dar? Kreuzen Sie die zutreffende(n) Abbildung(en) an!
Aufgabe 1255
AHS - 1_255 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Gleichung - lineare Funktion
Eine lineare Funktion y = f (x) kann durch eine Gleichung \(a \cdot x + b \cdot y = 0{\text{ mit }}a,b \in {{\Bbb R}^ + }\)
Aufgabenstellung:
Geben Sie einen Funktionsterm von f an und skizzieren Sie, wie der Graph aussehen könnte!
Aufgabe 1302
AHS - 1_302 & Lehrstoff: FA 2.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lineare Kostenfunktion
Ein Betrieb hat monatliche Fixkosten von € 3.600. Die zusätzlichen (variablen) Kosten, die pro Stück einer Ware für die Produktion anfallen, betragen € 85.
Aufgabenstellung:
Stellen Sie eine Gleichung einer linearen Kostenfunktion K auf, die die monatlichen Produktionskosten K(x) für x produzierte Stück dieser Ware modelliert!
Werbung
Mathematik, Elektrotechnik und Physik
MINT Wissen auf maths2mind ohne Abo und ohne Kreditkarte
Nach der Prüfung genießt du deinen Erfolg

Aufgabe 1462
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer Funktion
Der Graph der Funktion f ist eine Gerade, die durch die Punkte P = (2|8) und Q = (4|4) verlauft.
Aufgabenstellung:
Geben Sie eine Funktionsgleichung der Funktion f an!
Aufgabe 1742
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 14. Jänner 2020 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Graph zeichnen
Von einer linearen Funktion f sind nachstehende Eigenschaften bekannt:
- Die Steigung von f ist –0,4.
- Der Funktionswert von f an der Stelle 2 ist 1.
Aufgabenstellung
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen von f auf dem Intervall [–7; 7] ein. [0 / 1 Punkt]
Aufgabe 1862
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2021 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Längenausdehnung einer Brücke
Die Länge einer bestimmten Brücke ist abhängig von ihrer Temperatur.
- Bei einer Temperatur der Brücke von –14 °C ist diese 300 m lang.
- Bei einer Erwärmung um 25 °C dehnt sie sich um 0,1 m aus.
Die lineare Funktion l beschreibt modellhaft die Länge dieser Brücke in Abhängigkeit von ihrer Temperatur T. Dabei wird jeder Temperatur T ∈ [–20 °C; 40 °C] die Länge der Brücke l(T) zugeordnet (T in °C, l(T) in m).
Aufgabenstellung:
Stellen Sie eine Funktionsgleichung von l auf.
l(T) =
[0 / 1 P.]
Aufgabe 1256
AHS - 1_256 & Lehrstoff: FA 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Anstieg berechnen
Der Graph einer linearen Funktion f mit der Funktionsgleichung \(f\left( x \right) = k \cdot x + d\) verläuft durch die Punkte P = (–10|20) und Q = (20|5).
Aufgabenstellung
Berechnen Sie den Wert von k!
Werbung
Beat-the-Clock-Tests
Prüfungsvorbereitung unter simuliertem Zeitdruck
Nach der Prüfung in Ruhe entspannen

Aufgabe 1257
AHS - 1_257 & Lehrstoff: FA 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gesprächsgebühr
In der nachstehenden Abbildung ist der Graph zur Berechnung eines Handytarifs dargestellt. Der Tarif sieht eine monatliche Grundgebühr vor, die eine gewisse Anzahl an Freiminuten (für diese Anzahl an Minuten ist keine zusätzliche Gesprächsgebühr vorgesehen) beinhaltet.
Aufgabenstellung:
Bestimmen Sie die Gesprächskosten pro Minute, wenn die Anzahl der Freiminuten überschritten wird!
Aufgabe 1258
AHS - 1_258 & Lehrstoff: FA 2.2
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung einer Geraden
Die Gerade g ist durch ihren Graphen dargestellt. Zusätzlich ist ein Steigungsdreieck eingezeichnet.
Aufgabenstellung:
Ermitteln Sie einen Ausdruck in Abhängigkeit von a und b zur Berechnung des Anstiegs k!
Aufgabe 1342
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 09. Mai 2014 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Steigung einer linearen Funktion
Fünf lineare Funktionen sind in verschiedener Weise dargestellt.
- Aussage 1:
x m(x) 5 3 6 1 8 -3
- Aussage 2:
\(g\left( x \right) = - 2 + 3x\)
- Aussage 3:
x h(x) 0 -2 1 0 2 2
- Aussage 4:
Bild
- Aussage 5:
\(l\left( x \right) = \dfrac{{3 - 4x}}{2}\)
Aufgabenstellung:
Kreuzen Sie jene beiden Darstellungen an, bei denen die Steigung der dargestellten linearen Funktion den Wert k = –2 annimmt!