Wurzelziehen
Radizieren bzw. Wurzelziehen ermöglicht es, x zu errechnen, wenn x die Basis einer Potenz ist.
Hier findest du folgende Inhalte
Formeln
Potenzen, Wurzeln und Logarithmen
- Das Potenzieren entspricht einer mehrfachen Multiplikation. Es ermöglicht es x zu berechnen, wenn x unter einer Wurzel steht.
- Das Ziehen von Wurzeln stellt die Umkehrung vom Potenzieren dar. Es ermöglicht es x zu berechnen, wenn x die Basis einer Potenz ist.
- Das Logarithmieren ist eine weitere Möglichkeit einen Potenzterm nach x aufzulösen. Es ermöglicht es x zu berechnen, wenn x der Exponent einer Potenz ist.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Radizieren bzw. Wurzelziehen
Radizieren, d.h. das Wurzelziehen, ermöglicht es, x zu errechnen, wenn x die Basis einer Potenz ist.
Beispiel:
Berechne x
\(\begin{array}{l} {x^3} = 125\\ x = \sqrt[3]{{125}} = 5 \end{array}\)
Bezeichnungen beim Wurzelziehen / Radizieren
Das Radizieren ist die Umkehrung des Potenzierens. Der Wurzelexponent ist jener Wert, mit dem man den Wurzelwert potenzieren muss, um als Resultat den Radikanden der Wurzel zu erhalten. Schreibt man keinen Wurzelwert an, so gilt automatisch n=2
\({b = \root n \of a }\) | n-te Wurzel aus a |
b | Wurzelwert |
a | Radikand, Wert unter dem Wurzelzeichen |
n | Wurzelexponent |
Potenzen mit rationalen Exponenten
Die n-te Wurzel aus der nicht-negativen Zahl a ist jene eindeutige, ebenfalls nicht negative Zahl b, deren n-te Potenz wiederum gleich a ist. Anmerkung: Die n-te Wurzel aus der negativen Zahl a, kann nur im Bereich der komplexen Zahlen gelöst werden.
\(\eqalign{ & \root n \of a = b \Leftrightarrow a = {b^n} \cr & a,b \in {{\Bbb R}^ + };\,\,r,s \in {\Bbb R};\,\,n \in {\Bbb N} \cr}\)