Vektor
Ein Vektor ist eine Strecke in der Ebene oder im Raum. Jeder Vektor ist durch Richtung, Orientierung und durch Betrag gekennzeichnet.
Hier findest du folgende Inhalte
Formeln
Zahlen in Listenform
In der Algebra ist es oft zweckmäßig mit Zahlen in Listenform zu arbeiten. Wir fassen nachfolgen kurz die diesbezüglich wichtigsten Listenformen für Zahlen zusammen. Wir verwenden dabei folgende Sprachregelung:
- Elemente: Mengen setzen sich aus Elementen zusammen.
- Koeffizienten eines Gleichungssystems: Koeffizienten sind unveränderliche Zahlen, die als Faktor vor den Variablen einer Gleichung stehen
- Komponenten einer Matrix: Matrizen setzen sich aus Komponenten zusammen. (Obwohl hier leider oft "Element" statt "Komponente" verwendet wird.) Die Komponenten aikder Matrix entsprechen den Koeffizienten aikim linearen Gleichungssystem
- Index der Komponenten einer Matrix: Die Position jeder Komponente in der Matrize wird durch zwei Indizes i (=Zeile) und k (=Spalte) beschrieben.
- Koeffizientenmatrix: Ein lineares Gleichungssystem in n Unbekannten und m Gleichungen lässt sich als Koeffizientenmatrix anschreiben. Die Komponenten aikder Matrix entsprechen den Koeffizienten aikim linearen Gleichungssystem
- Gleichungsmatrix: Die Gleichungsmatrix erweitert die Koeffizientenmatrix um eine weitere Spalte nach rechts. In dieser Spalte werden die Konstanten gemäß der "rechten Seite" vom linearen Gleichungssystem geschrieben.
Menge
Eine Menge stellt die Zusammenfassung von mehreren Elementen zu einer Gesamtheit dar. Man verwendet geschwungene Klammern und separiert die einzelnen Elemente durch Beistriche. Die Reihenfolge in der die Elemente angeschrieben werden spielt keine Rolle. {1,2,3}={3,1,2}}={2,3,1}. Entscheidend ist, ob ein Element Teil der Menge ist oder ob nicht. Das mehrfaches Anschreiben von ein und demselben Element einer Menge ist daher nicht sinnvoll. {1,1,2,2,3,3}={1,2,3}
Zusammenhang: Tupel - Vektor - Matrix - Tensor
Tupel, Vektor, Matrix oder Tensor sind verschieden komplexe Schreibweisen für Objekte, die zu einer Liste, unter Berücksichtigung der Reihenfolge, zusammengefasst wurden. Dadurch unterscheiden sie sich von einer Menge, bei denen es nicht auf die Reihenfolge der Elemente ankommt.
Tupel
Ein Tupel stellt die Zusammenfassung von mehreren Komponenten zu einer Liste dar. Man verwendet runde Klammern und separiert die einzelnen Komponenten durch Beistriche. Die Reihenfolge in der die Komponenten angeschrieben werden spielt eine wesentliche Rolle. (1,2,3)≠(3,2,1). Das mehrfaches Anschreiben von gleichlautenden Komponenten hat eine Bedeutung. (1,1,2,2,3,3)≠(1,2,3). Jede Komponente im Tupel hat ihren eindeutigen Platz.
\(\left( {\begin{array}{*{20}{c}} {{a_1}}\\ {...}\\ {{a_n}} \end{array}} \right)\)
- Ein 2er Tupel wird auch geordnetes Paar genannt; z.B.: (x, f(x))
- Ein 3er Tupel wird auch Trippel genannt; z.B.: (x1,y1,z1)
- Ein 4er Tupel wird auch Quadrupel genannt; z.B.: (x1,y1,z1,t1)
Vektor
Vektoren sind eindimensionale Listen von Zahlen, wobei die Komponenten des Vektors in Form von Zeilen- und als Spaltenvektor angeschrieben werden können. Die Gesamtheit der Komponenten eines Vektors (der Klammerausdruck, der den Vektor repräsentiert) entsprechen daher einem Tupel. Die Anzahl der Komponenten eines Vektors stimmt mit der Dimension des Vektors überein. (x1,y1,z1) repräsentiert also einen 3-dimensionalen Vektor. Die Reihenfolge in der die Komponenten angeschrieben werden spielt eine wesentliche Rolle dabei, in welche Richtung der Vektor zeigt
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}} {{a_1}}\\ {...}\\ {{a_n}} \end{array}} \right)\)
- an: Die Werte an bezeichnet man als die Komponenten des Vektors.
- n: Also die Anzahl der Komponenten eines Vektors, bezeichnet man als die Dimension des Vektors.
Aus der Geometrie sind uns
- 2-dimeonsionale Vektoren (ebene Geometrie)
- 3-dimensionele Vektoren (räumliche Geometrie) vertraut.
Aus der Physik, speziell der speziellen Relativitätstheorie, sind uns
- 4-dimensionele Tupel vertraut.
- Ihre ersten drei Dimensionen beschreiben den Raum,
- ihre vierte Dimension beschreibt die Zeit.
Matrix
Matrizen sind zweidimensionale Listen von Zahlen. Eine Matrix mit m Zeilen und n Spalten ist eine Matrix der m x n ten Ordnung. Die Komponente aik mit den Indizes ik steht in der i-ten Zeile und in der k-ten Spalte. Auch die Zeilen oder Spalten einer Matrix sind Tupel.
\(\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right)\)
Lineares Gleichungssystem in Matrixschreibweise
→ Ein lineares Gleichungssystem mit m Gleichungen in n Unbekannten kann mit Hilfe einer Koeffizientenmatrix und zweier Spaltenvektoren angeschrieben werden.
\(\begin{array}{*{20}{c}} {{a_{11}} \cdot {x_1}}& + &{{a_{12}} \cdot {x_2}}& + &{...}& + &{{a_{1n}} \cdot {x_n}}& = &{{b_1}}\\ {{a_{21}} \cdot {x_1}}& + &{{a_{22}} \cdot {x_2}}& + &{...}& + &{{a_{2n}} \cdot {x_n}}& = &{{b_2}}\\ {...}& + &{...}& + &{...}& + &{...}& = &{...}\\ {{a_{m1}} \cdot {x_1}}& + &{{a_{m2}} \cdot {x_2}}& + &{...}& + &{{a_{mn}} \cdot {x_n}}& = &{{b_m}} \end{array}\)
Koeffizientenmatrix
Die Koeffizientenmatrix besteht aus den Koeffizienten des linearen Gleichungssystems. Der 1. Spaltenvektor besteht aus den Komponenten von der Variablen x, während die rechte Seite der Gleichungen den 2. Spaltenvektor bildet.
\(\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{...}&{{a_{1n}}}\\ {{a_{12}}}&{{a_{22}}}&{...}&{{a_{2n}}}\\ {...}&{...}&{...}&{...}\\ {{a_{_{m1}}}}&{{a_{m2}}}&{...}&{{a_{mn}}} \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {...}\\ {{x_m}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{b_1}}\\ {{b_2}}\\ {...}\\ {{b_m}} \end{array}} \right) \Leftrightarrow A \cdot \overrightarrow x = \overrightarrow b \)
Wenn die inverse Matrix A-1 existiert, dann kann man nach x wie folgt auflösen: \(\overrightarrow x = {A^{ - 1}} \cdot \overrightarrow b\)
Gleichungsmatrix
Ein lineares Gleichungssystem mit m Gleichungen in n Unbekannten kann aber auch mit Hilfe einer sogenannten Gleichungsmatrix angeschrieben werden. Die Gleichungsmatrix erweitert die Koeffizeintenmatrix um eine zusätzliche, durch einen lotrechten Strich abgetrennte Spalte, in der die Konstanten bi der rechten Seite vom zugrunde liegenden linearen Gleichungssystem stehen
\(\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{...}&{{a_{1n}}}&{\left| {{b_1}} \right.}\\ {{a_{21}}}&{{a_{22}}}&{...}&{{a_{2n}}}&{\left| {{b_2}} \right.}\\ {...}&{...}&{...}&{...}&{...}\\ {{a_{m1}}}&{{a_{m2}}}&{...}&{{a_{mn}}}&{\left| {{b_m}} \right.} \end{array}} \right)\)
Determinante
Determinanten sind Zahlen(werte) die man (ausschließlich) einer quadratischen Matrix zuordnen kann und die aus deren Komponenten berechnet werden.
Tensor
Ein Tensor ist ein mathematisches Objekt, welches Komponenten hat. Jede Tensorkomponente kann eine Funktion oder eine Zahl sein. Tensoren definieren sich über die Weise, in der ihre Komponenten transformieren.
- Ein Skalar ist ein Tensor der 0. Stufe
- Ein Vektor ist ein Tensor der 1. Stufe
- Eine 3 x 3 Matrix ist ein Tensor der 2. Stufe, dieser besteht also aus 9 Komponenten. Die Komponenten eines Tensors 2. Stufe transformieren
- kontravariant
- kovariant
- gemischt
- Aus der Physik, speziell der allgemeinen Relativitätstheorie, sind uns mehrdimensionale Tupel vertraut.
Geht bei einer Koordinatentransformation die Komponente \({x^a}\) in \({x^{a'}}\) über gemäß
-
kontravariante \({T^{a'b'}} = \dfrac{{\partial {x^{a'}}}}{{\partial {x^a}}}\dfrac{{\partial {x^{b'}}}}{{\partial {x^b}}}{T^{ab}}\)
-
kovariante \({T_{a'b'}} = \dfrac{{\partial {x^a}}}{{\partial {x^{a'}}}}\dfrac{{\partial {x^b}}}{{\partial {x^{b'}}}}{T_{ab}}\)
-
gemischte \({T^{a'}}_{b'} = \dfrac{{\partial {x^{a'}}}}{{\partial {x^a}}}\dfrac{{\partial {x^b}}}{{\partial {x^{b'}}}}{T^a}_b\)
so ist T ein Tensor 2. Stufe.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

Beschriftung im kartesischen Koordinatensystem
Die drei Koordinatenachsen stehen im kartesischen Koordinatensystem orthogonal (in 90°) aufeinander. Die Achsen werden entweder mit x,y und z beschriftet oder mit x1, x2, x3.
Punkt im \({{\Bbb R}^2},\,\,\,{{\Bbb R}^3}\)
Die Lage eines Punkts ist durch den Abstand je Koordinatenrichtung vom Ursprung des Koordinatensystems bestimmt. Abhängig davon, wie die Koordinatenachsen beschriftet wurdenm gibt es unterschiedliche Möglichkeiten Punkte und Vektoren zu beschriften
\(\begin{array}{l} {\Bbb R^{2:}}:P\left( {{P_x}\left| {{P_y}} \right.} \right) \buildrel \wedge \over = P\left( {{P_1}\left| {{P_2}} \right.} \right)\\ {\Bbb R^3}:P\left( {{P_x}\left| {{P_y}\left| {{P_z}} \right.} \right.} \right) \buildrel \wedge \over = P\left( {{P_1}\left| {{P_2}\left| {{P_3}} \right.} \right.} \right) \end{array}\)
Skalar
Skalar ist ein Ausdruck in der Vektorrechnung für eine relle Zahl. Man verwendet den Begriff Skalar um die Richtungsunabhängigkeit einer Größe im Unterschied zum richtungsabhängigen Vektor zu betonen.
Vektor
Ein Vektor ist eine Strecke in der Ebene oder im Raum. Jeder Vektor ist durch Richtung, Orientierung und durch Betrag gekennzeichnet. Vektoren können im Raum beliebig parallelverschoben werden, d.h. ihr Anfangspunkt kann beliebig festgelegt werden, daraus ergibt sich dann ein eindeutiger Endpunkt. Vektoren spielen in der Physik eine große Rolle, so ist etwa die Geschwindigkeit kein Skalar, sondern ein Vektor.
- Geometrisch wird ein Vektor durch einen Pfeil, mit einem Schaft und einer Spitze (definiert die Orientierung) repräsentiert.
- Algebraisch sind Vektoren eindimensionale Listen von Zahlen, wobei die Komponenten des Vektors in Form von Zeilen- und als Spaltenvektor angeschrieben werden können. Die Anzahl der Komponenten eines Vektors stimmt mit der Dimension des Vektors überein. (ax,ay,az) repräsentiert also einen 3-dimensionalen Vektor. Die Reihenfolge in der die Komponenten angeschrieben werden spielt eine wesentliche Rolle dabei, in welche Richtung der Vektor zeigt
\(\eqalign{ & \overrightarrow a = \overrightarrow {{a_x}} + \overrightarrow {{a_y}} + \overrightarrow {{a_z}} = \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right) \cr & \overrightarrow a = {a_x} \cdot \overrightarrow i + {a_y} \cdot \overrightarrow j + {a_z} \cdot \overrightarrow k \cr}\)
Illustration eines Vektors vom Ursprung zum Punkt P
Gegenvektor
Den Gegenvektor erhält man, indem man den Ausgangsvektor um 180° dreht, bzw. indem man den Ausgangsvektor mit dem Skalar -1 multipliziert. Vektor und Gegenvektor haben den gleichen Betrag, die gleiche Richtung aber entgegengesetzte Orientierung.
\(\overrightarrow a = \left( {\begin{array}{*{20}{c}}
{{a_x}}\\
{{a_y}}\\
{{a_z}}
\end{array}} \right) \Leftrightarrow - \overrightarrow a = - 1 \circ \overrightarrow a = \left( {\begin{array}{*{20}{c}}
{ - {a_x}}\\
{ - {a_y}}\\
{ - {a_z}}
\end{array}} \right)\)
Betrag eines Vektors
Der Betrag bzw. die Länge des Vektors ergeben sich aus dem Abstand zwischen seinem Anfangspunkt, dem Schaft im Punkt "P" und seinem Endpunkt, also seiner Spitze in "Q".
\(\left| {\overrightarrow {PQ} } \right| = \left| {\overrightarrow v } \right| = \sqrt {{{\left( {{Q_x} - {P_x}} \right)}^2} + {{\left( {{Q_y} - {P_y}} \right)}^2} + {{\left( {{Q_z} - {P_z}} \right)}^2}} = \sqrt {{v_x}^2 + {v_y}^2 + {v_z}^2} \)
\(\left| {\overrightarrow v } \right| = \left| {\left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}}\\ {{v_z}} \end{array}} \right)} \right| = \sqrt {{v_x}^2 + {v_y}^2 + {v_z}^2} \)
Illustration zur Richtung und zur Berechnung vom Betrag eines zweidimensionalen Vektors
Richtung des Vektors
Die Richtung eins Vektors ist durch seine Lage relativ zu den Achsen des Koordinatensystems bestimmt. Ein Vektor hat eine einzige Richtung! Die Richtung des Vektors kann man aus dem Arkustangens vom Quotienten aus der Differenz der y-Koordinaten und der Differenz der x-Koordinaten zweier Punkte vom Vektor berechnen.
\(\alpha = \arctan \dfrac{{{Q_y} - {P_y}}}{{{Q_x} - {P_x}}}\)
Orientierung eines Vektors
Vektoren mit gleicher Richtung haben entweder gleiche oder entgegengesetzte Orientierung. Die Orientierung wird durch Schaft und Spitze des Vektors definiert. Ein Gegenvektor ist ein Vektor mit gleichem Betrag und gleicher Richtung aber umgekehrter Orientierung als der betrachtete Vektor.
Gleiche Vektoren
Vektoren sind gleich, wenn sie gleich lang, parallel und gleich orientiert (Pfeilspitze) sind. Gleiche Vektoren können unterschiedliche Koordinatendarstellungen haben.
Illustration zur Orientierung, zur Gleichheit von Vektoren und zum Gegenvektor eines Vektors und zu Vektoren mit gleichem Betrag
Nullvektor
Der Nullvektor \(\overrightarrow 0\) hat keine bestimmte Richtung. Seine Länge (sein Betrag) ist null. Der Nullvektor ist das neutrale Element bezüglich der Addition von Vektoren. Schaft und Spitze vom Nullvektor fallen in einem Punkt zusammen.
\(\begin{array}{l} \overrightarrow 0 = \left( {0\left| 0 \right.} \right) = \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right)\\ \overrightarrow {AA} = 0 \end{array}\)
Der Nullvektor ist kollinear zu jedem anderen Vektor und komplanar zu einer von 2 Vektoren aufgespannten Ebene.
Basisvektor
Die Basisvektoren liegen jeweils in einer Koordinatenachse, ihre Länge d.h. ihr Betrag ist 1. Sie spannen das Koordinatensystem auf. Je Dimension gibt es einen eigenen Basisvektor. Seine Komponenten bestehen aus einer "1" und sonst nur aus Nullen.
\(\eqalign{ & \overrightarrow i = \left( {\matrix{ 1 \cr 0 \cr } } \right) \cr & \overrightarrow j = \left( {\matrix{ 0 \cr 1 \cr } } \right) \cr}\)
Einheitsvektor
Der Einheitsvektor \( \overrightarrow {{r_0}}\), hat dieselbe Richtung wie der Richtungs- bzw. der Ortsvektor \( \overrightarrow r\), seine Länge wurde aber auf 1 normiert.
\(\eqalign{ & \overrightarrow {{r_0}} = {{\overrightarrow r } \over {\left| r \right|}} = \left( {\matrix{ {{{{r_x}} \over {\sqrt {{{\left( {{r_x}} \right)}^2} + {{\left( {{r_y}} \right)}^2}} }}} \cr {{{{a_y}} \over {\sqrt {{{\left( {{r_x}} \right)}^2} + {{\left( {{r_y}} \right)}^2}} }}} \cr } } \right) \cr & {\rm{mit}}\,\,\,\left| {\overrightarrow r } \right| \ne 0 \cr}\)
Ortsvektor
Der Ortsvektor ist der Vektor vom Ursprung des Koordinatensystems zu einem gegebenen Punkt. Ein Ortsvektor \(\overrightarrow a\) hat seinen Anfang immer im Ursprung des Koordinatensystems. Seine Richtung, Orientierung und Betrag ergeben sich aus der Lage seines Endpunkts. Einen Ortsvektor darf man daher nicht parallel verschieben, man darf auch nicht seinen Betrag ändern.
\(\overrightarrow a = x.\overrightarrow i + y.\overrightarrow j = \left( {\matrix{ x \cr y \cr } } \right) = \left( {x,y} \right)\)
Verbindungsvektor
Der Verbindungsvektor verbindet zwei Punkte im Raum. Es sind die Punkte P (Px l Py) und Q (Qx l Qy) gegeben. Der Verbindungsvektor ist jener Vektor, der in P seinen Schaft und in Q seine Spitze hat. Um ihn zu berechnen subtrahiert man vom Ortsvektor zu Q (Spitze) den Ortsvektor zu P (Schaft). Einen Verbindungsvektor darf man daher nicht parallel verschieben, man darf auch nicht seinen Betrag oder seine Orientierung ändern.
In \({{\Bbb R}^2}\):
\(\overrightarrow v = \overrightarrow {PQ} = \overrightarrow {UQ} - \overrightarrow {UP} = Q - P = \left( {\begin{array}{*{20}{c}} {{Q_x} - {P_x}}\\ {{Q_y} - {P_y}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{v_x}}\\ {{v_y}} \end{array}} \right)\)
In \({{\Bbb R}^3}\):
\(\begin{array}{l} A\left( {{A_x}\left| {{A_y}\left| {{A_z}} \right.} \right.} \right)\\ B\left( {{B_x}\left| {{B_y}\left| {{B_z}} \right.} \right.} \right)\\ \overrightarrow {AB} = B - A = \left( {\begin{array}{*{20}{c}} {{B_x} - {A_x}}\\ {{B_y} - {A_y}}\\ {{B_z} - {A_z}} \end{array}} \right) \end{array}\)
"Spitze minus Schaft Regel": Man erhält den Verbindungsvektor zweier Punkte, indem man Komponentenweise die Koordinaten von der Spitze minus jener vom Schaft anschreibt.
Illustration vom Verbindungsvektor zwischen 2 Punkten
Richtungsvektor als Parallelvektor zum Verbindungsvektor
Der Richtungsvektor \(\overrightarrow r\) ist entweder der Verbindungsvektor oder ein zum Verbindungsvektor paralleler Vektor. Der Richtungsvektor hat zwar eine definierte Länge, aber keine feste Position im Koordinatensystem d.h. er kann parallel verschoben werden und ist noch immer ein Richtungsvektor. Der Verbindungsvektor ist ein besonderer Richtungsvektor, weil sein Anfangs- bzw. Endpunkt mit den besonderen Punkten P und Q zusammenfallen.
Mehrdimensionaler Vektor
Die Anzahl der Komponenten eines Vektors entspricht der Dimension des Raums. Dreidimensionale Vektoren spannen den uns vertrauten dreidimensionalen Raum aus Breite, Tiefe und Höhe auf. Vierdimensionale Vektoren spannen die Raum-Zeit der Physik auf. Bei höherdimensionalen Vektoren nummeriert man die Komponenten, weil die Dimensionen mitunter keinen anschaulichen Namen haben.
\(\eqalign{ & P = \left( {{P_1}\left| {{P_2}\left| {...\left| {{P_n}} \right.} \right.} \right.} \right) \cr & Q = \left( {{Q_1}\left| {{Q_2}\left| {...\left| {{Q_n}} \right.} \right.} \right.} \right) \cr}\)
n-dimensionaler Richtungsvektor von P nach Q:
\(\overrightarrow {PQ} = \left( {\begin{array}{*{20}{c}} {{Q_1} - {P_1}}\\ {{Q_2} - {P_2}}\\ {...}\\ {{Q_n} - {P_n}} \end{array}} \right)\)