Tilgungsplan
Hier findest du folgende Inhalte
Formeln
Zinseszinsrechnung
Bei der Zinseszinsrechnung werden die Zinsen am Ende der Zinsperiode dem Kapital einmalig zugeschlagen, sodass sie in der darauffolgenden Zinsperiode mit verzinst werden. Der Aufzinsungsfaktor q gibt an, um welchen Faktor ein Kapital innerhalb einer Zinsperiode bei einem Zins von p anwächst.
K0 | Anfangskapital in € |
Kn | Endkapital in € |
n | Laufzeit in Jahren |
p | Zinssatz in % |
i | Jährliche Zinssatz, dimensionslose Dezimalzahl |
q=1+i | Aufzinsungsfaktor, dimensionslos |
Aufzinsungsfaktor
\(q = 1 + i\)
mit \(i = \dfrac{p}{{100\% }}{\rm{ und }}\left[ i \right] = \left[ q \right] = 1\)
Bei einer n-jährigen Veranlagung mit Zinseszins beträgt der Aufzinsungsfaktor qn.
Beispiel:
\({\text{p = 5% }} \to {\text{i = 0}}{\text{,05}} \to {\text{q = 1}}{\text{,05}}\)
Endkapital Kn gesucht
→ Die Aufzinsung gemäß der leibnizschen Zinseszinsformel dient zur Beantwortung der Fragestellung, welches Endkapital Kn man erhalten wird, wenn man das Anfangskapital K0 bei einem Zins von p% für n Jahren anlegt.
\({K_n} = {K_0} \cdot {\left( {1 + \dfrac{p}{{100}}} \right)^n} = {K_0} \cdot {q^n}\)
Beispiel:
K0=12.500€ … Anfangskapital
P=2,75% … Zins in %
n=1 Jahr und 9 Monate bzw. 21/12 … Laufzeit in Jahren
\(\eqalign{ & {K_n} = {K_0} \cdot {\left( {1 + \frac{p}{{100}}} \right)^n} \cr & {K_{\frac{{21}}{{12}}}} = 12500 \cdot {\left( {1 + \frac{{2,75}}{{100}}} \right)^{\frac{{21}}{{12}}}} \approx 13107,75 \cr} \)
Anfangskapital K0 gesucht
→ Die Diskontierung gemäß der leibnizschen Zinseszinsformel dient zur Beantwortung der Fragestellung welches Kapital K0 man anlegen muss, um bei einem Zinssatz von p% nach n Jahren über das Endkapital von Kn zu verfügen.
\({K_0} = \dfrac{{{K_n}}}{{{q^n}}} = \dfrac{{{K_n}}}{{{{\left( {1 + \dfrac{p}{{100}}} \right)}^n}}}\)
Beispiel:
Kn=742€ .. Endkapital
p=3% ... Zins in %
n=5 Jahre ... Laufzeit
\(\eqalign{ & {K_0} = \frac{{{K_n}}}{{{q^n}}} \cr & p = 3\% \to i = 0,03 \to q = 1,03 \cr & {K_0} = \frac{{742}}{{{{1,03}^5}}} \approx 640,05 \cr} \)
Laufzeit n gesucht
→ Dient zur Beantwortung der Fragestellung für wie viele Jahre n man ein Anfangskapital K0 bei einem Zins von p% veranlagen muss, damit man das Endkapital Kn erhält.
\(n = \dfrac{{\log \dfrac{{{K_n}}}{{{K_0}}}}}{{\log q}} = \dfrac{{\log \dfrac{{{K_n}}}{{{K_0}}}}}{{\log \left( {1 + \dfrac{p}{{100}}} \right)}}\)
Zins p in % gesucht
→ Dient zur Beantwortung der Fragestellung, welcher Zins erwirtschaftet werden muss, damit nach n Jahren aus dem Anfangskapital K0 das Endkapital Kn wird.
\(p = \left( {\root n \of {\dfrac{{{K_n}}}{{{K_0}}}} - 1} \right) \cdot 100\)
Unterjährige Raten
Für unterjährige Raten gilt
\(\eqalign{ & {i_p} = {\left( {1 + {i_m}} \right)^{\frac{m}{p}}} - 1 \cr & {i_m} = \root {\frac{m}{p}} \of {{i_p} + 1} - 1 \cr & \cr & r = 1 + i = {(1 + {i_m})^m} \cr & {r_p} = \root p \of r = \root p \of {{{\left( {1 + {i_m}} \right)}^m}} = {\left( {1 + {i_m}} \right)^{\frac{m}{p}}} \cr & \cr & {B_{{\text{nachsch }}}} = R \cdot \frac{{1 - {r_p}^{ - n}}}{{{i_p}}} \cr & {B_{{\text{vorsch = }}}}R \cdot \frac{{1 - {r_p}^{ - n}}}{{{i_p}}} \cdot {r_p} \cr & \cr & {E_{{\text{nachsch }}}} = R \cdot \frac{{{r_p}^n - 1}}{{{i_p}}} \cr & {E_{{\text{vorsch }}}} = R \cdot \frac{{{r_p}^n - 1}}{{{i_p}}} \cdot {r_p} \cr} \)
mit
im | unterjähriger Zinssatz |
m | Anzahl der unterjährigen Verzinsungsperioden; Semester → m=2; Quartal → m=4 |
ip | äquivalenter auf die Rentenperiode bezogener Zinssatz |
p | Anzahl der Raten pro Jahr |
R | Rate |
Unterjährige Verzinsung
Bei der unterjährigen Verzinsung ist die Anlagedauer ein ganzzahliges Vielfaches einer Verzinsungsperiode. Die Zinsen werden dabei mehrmals pro Jahr dem Kapital zugeschlagen, z.B. Verzinsungsperiode = vierteljährig → Zinsen werden an jedem Quartalsende dem Kapital zugeschlagen
\({K_n} = {K_0} \cdot {\left( {1 + \dfrac{{{p_m}}}{{100}}} \right)^{m \cdot n}}\)
\({p_m} = \dfrac{p}{m}\)
pm | unterjähriger Zinssatz |
m | Anzahl der Zinsperioden pro Jahr |
n | Anzahl der Veranlagungsjahre |
Beispiel:
\(\eqalign{ & n = 1{\text{ }}...{\text{ Laufzeit ist 1 Jahr}} \cr & {{\text{K}}_0} = 100 \cr & {p_{nom}} = 12\% {\text{ }}...{\text{ nomineller Jahreszinssatz}} \cr & m = 4{\text{ }}...{\text{ Quartalsweise Verzinsung}} \cr & \to {\text{ }}{{\text{p}}_m} = \dfrac{{12\% }}{4} = 3\% \cr & {K_n} = {K_0} \cdot {\left( {1 + \dfrac{{{p_m}}}{{100}}} \right)^{m \cdot n}} \cr & {K_n} = 100 \cdot {\left( {1 + \dfrac{3}{{100}}} \right)^{4 \cdot 1}} = 112,55 \cr} \)
Da bei der unterjährigen Verzinsung die Zinsen nach jedem Quartal dem Kapital zugeschlagen und fortan ebenfalls verzinst werden, rechnen wir nun noch aus wie hoch der Effektivzinssatz ist. Wir nützen dabei die weiter oben stehende Formel "Zins in % gesucht"
\(\eqalign{ & {p_{eff}} = \left( {\root n \of {\dfrac{{{K_n}}}{{{K_0}}}} - 1} \right) \cdot 100 \cr & {p_{eff}} = \left( {\root 1 \of {\dfrac{{112.55}}{{100}}} - 1} \right)*100 = 12,55\% \cr} \)
→ Durch die unterjährige Verzinsung ist der Effektivzinssatz mit 12,55% tatsächlich höher als der nominelle Jahreszinssatz von 12%
Gemischte Verzinsung
Bei der gemischten Verzinsung ist die Anlagedauer kein ganzzahliges Vielfaches einer Verzinsungsperiode
\({K_n} = {K_0} \cdot {\left( {1 + \dfrac{{{p_m}}}{{100}}} \right)^{{n_v}}} \cdot \left( {1 + \dfrac{{{p_m}}}{{100}} \cdot {n_r}} \right)\)
\({n_r} = \dfrac{{{\text{Anzahl der Monate der angebrochenen Verzinsungsperiode}}}}{{{\text{Anzahl der Monate einer vollern Verzinsungsperiode}}}}\)
nv | Anzahl der vollen Verzinsungsperioden, wird mit Zinseszins berechnet |
nr | restliche Zeit als Teil der lediglich angebrochenen Verzinsungsperiode, wird mit einfachem Zins berechnet |
Stetige oder kontinuierliche Verzinsung
Bei der stetigen oder kontinuierlichen Verzinsung konvergiert die Dauer einer Verzinsungsperiode mit anschließender Wiederveranlagung gegen Null, während die Anzahl der Zinsperioden gegen Unendlich geht. Der Zinsertrag steigt mit der Anzahl der Zinsgutschriften pro Jahr. Der zusätzliche Zinsertrag bei sukzessiver Steigerung der jährlichen Zinsperioden nimmt jedoch immer weiter ab und nähert sich einem Grenzwert, der mit Hilfe nachfolgender Exponentialfunktion berechnet wird.
\({K_n} = {K_0} \cdot {e^{\left( {\dfrac{p}{{100}} \cdot n} \right)}}\)
Beispiel:
Wir nehmen die selben Daten wie im Beispiel oben für die quartalsweise Verzinsung
\( \eqalign{ & n = 1{\text{ }}...{\text{ Laufzeit ist 1 Jahr}} \cr & {{\text{K}}_0} = 100 \cr & {p_{nom}} = 12\% {\text{ }}...{\text{ nomineller Jahreszinssatz}} \cr & {\text{kontinuierliche Verzinsung}} \cr & {K_n} = {K_0} \cdot {e^{\left( {\dfrac{p}{{100}} \cdot n} \right)}} \cr & {K_n} = 100 \cdot{e^{\left( {\dfrac{{12}}{{100}}} \right)}} = 112,75 \cr & {p_{eff}} = \left( {\root 1 \of {\dfrac{{112,75}}{{100}}} - 1} \right) \cdot 100 = 12,75\% \cr} \)
→ Wir sehen, dass sich durch den Übergang von quartalsweiser auf kontinuierliche Verzinsung der Effektivzinssatz nur geringfügig von 12,55% auf 12,75% erhöht hat.
Endfälliges-, Tilgungs- versus Annuitätendarlehen
Wenn man ein Darlehen aufnimmt, muss dieses während der Darlehenslaufzeit getilgt, also zurückbezahlt, werden, andernfalls handelt es sich um ein endfälliges Darlehen.
- Für endfällige Darlehen gibt es üblicherweise einen Ansparplan, mit dem Ziel am Ende der Darlehenslaufzeit soviel angespart zu haben, damit man das Darlehen auf einmal zurückzahlen kann. Der Ansparplan besteht meist aus Aktien und Anleihen. Man geht dabei das Risiko ein, dass sich der Aktienmarkt nicht so entwickelt wie erwartet und man am Laufzeitende zu wenig angespart hat um die gesamte Schuld zurückzahlen zu können.
- Bei Darlehen, die während der Laufzeit zurückgezahlt werden, unterscheidet man zwischen Tilgungs- und Annuitätendarlehen.
- Beim Tilgungsdarlehen bleibt die Tilgungsrate über die Laufzeit gleich, man zahlt also monatlich einen konstanten Betrag von der Schuld zurück. Da die Zinsen von der Restschuld berechnet werden, sinken die Zinszahlung während der Laufzeit kontinuierlich. Die Annuität, bzw. die Kreditrate, als Summe aus Zins- und Tilgungsanteil, ist am Anfang der Laufzeit am höchsten und nimmt während der Laufzeit ab.
- Beim Annuitätendarlehen bleibt die Annuität bzw. die Kreditrate über die Laufzeit unverändert gleich. Von der monatlich konstanten Ratenzahlung dominiert Anfangs der Zinsanteil, gegen Ende der Tilgungsanteil.
Annuität
Die Annuität ist ein über die Laufzeit gleichbleibender regelmäßiger Betrag, der (etwa monatlich) zur Tilgung eines Darlehens zurückbezahlt wird. Die Annuität setzt sich zusammen aus einem Anteil zur Kapitaltilgung T (Abbau der Schuld) und einer Zinszahlung P, die für die Rückzahlung der Zinsen anfällt.
Am Anfang der Laufzeit (hoher Schuldenstand) zahlt man vorwiegend für die Zinsen und zahlt kaum das Kapital selbst zurück, während man am Ende der Laufzeit (geringer Schuldenstand) vorwiegend das Kapital tilgt und kaum mehr Zinsen bezahlt. Die Höhe der regelmäßig zu bezahlenden Annuität wird so berechnet, dass sie betragsmäßig konstant bleibt, obgleich der Anteil an der Tilgung im Laufe der Zeit zunimmt und die Zinszahlung im Laufe der Zeit abnimmt.
\(A = \dfrac{{{K_n} \cdot {q^n}}}{{\dfrac{{{q^n} - 1}}{{q - 1}}}}\)
A | Annuität, bleibt über die Laufzeit konstant |
Kn | Endkapital nach n Jahren |
i | Jährlicher Zinssatz (Dezimalzahl) |
q=1+i | Aufzinsungsfaktor |
Tilgungsplan
Der Tilgungsplan ist eine tabellarische (z.B. monatliche) Aufstellung über die Kreditlaufzeit, aus der man die Zinszahlung P, die Kapitaltilgung T, die Annuität A und die Restschuld Kn übersichtlich ablesen kann.
K0 | Höhe des Kredits |
i | Jährlicher Zinssatz (Dezimalzahl) |
Ti | Tilgungsanteil |
Der Tilgungsplan sieht dann wie folgt aus
Zeit |
Zinszahlung Zinsanteil P |
Kapitaltilgung Tilgungsanteil T |
Annuität, Kreditrate A=P+T |
Restschuld Kn \({K_n} = {K_{n + 1}} + {T_{n + 1}}\) |
0 | K0 | |||
1 | \(P={K_0} \cdot i\) | T1 | \({A_1} = {K_0} \cdot i + {T_1}\) | \({K_1} = {K_0} - {T_1}\) |
... | ... | ... | ... | ... |
Beispiel:
Veranschaulichung der dramatischen Wirkung vom Zinseszins (Die Idee vom Josephspfennig):
- Hätte Joseph zur Zeit von Jesus Geburt 1€ mit 3% Zinsen bei seiner Hausbank veranlagt und nie etwas abgehoben, so hätten seine Nachkommen im Jahr 2019 ein Guthaben von: \(1\mbox{€} \cdot {\left( {1 + \dfrac{3}{{100}}} \right)^{2019}} = 82\,\,862\,\,241\,\,987\,\,585\,\,880\,\,104\,\,141\,\,897\mbox{€} = 8,3 \cdot {10^{25}}\mbox{€}\)
- Bei 8,3 Milliarden Menschen hätte im Jahr 2019 jeder Mensch ein Guthaben von \(\dfrac{{8,3 \cdot {{10}^{25}}}}{{8,3 \cdot {{10}^9}}} = 1 \cdot {10^{16}}\mbox{€} \overset{\wedge}\to{=} 10{\text{ Billiarden }}\mbox{€}\).
- Hätte er länger gespart und das doppelte Anfangskapital veranlagt, so hätte er heute ein Guthaben von: \(2\mbox{€} \cdot {\left( {1 + \dfrac{3}{{100}}} \right)^{2019}} = 165\,\,724\,\,483\,\,975\,\,171\,\,760\,\,208\,\,283\,\,795\mbox{€} = 1,7 \cdot {10^{26}}\mbox{€}\)
- D.h. doppelt so langes sparen, ehe man das Ersparte veranlagt, bringt langfristig nichts.
- Hätte Josef statt 3% sogar 4%, also um 1% mehr an Zinsen heraus verhandelt, so hätte er heute ein Guthaben von: \(1\mbox{€} {\left( {1 + \dfrac{4}{{100}}} \right)^{2019}} = 24\,\,564\,\,732\,\,784\,\,631\,\,725\,\,180\,\,258\,\,122\,\,392\,\,563\,\,155\mbox{€} = 2,5 \cdot {10^{34}}\mbox{€}\)
- D.h. etwas höhere Zinsen wirken sich langfristig dramatisch aus. (1034 >> 1026)
- Der Plantet Erde würde in purem Gold (1 kg Gold = 41.000€; Gewicht der Erde = \({\rm{6}} \cdot {\rm{1}}{{\rm{0}}^{24}}kg\)) somit \(\left( {{\rm{6}} \cdot {\rm{1}}{{\rm{0}}^{24}}} \right) \cdot \left( {4,1 \cdot {{10}^4}} \right) \approx 2,5 \cdot {10^{29}}\mbox{€}\)kosten.
- D.h. die Bank müsste im Jahr 2019: \(\dfrac{{2,5 \cdot {{10}^{34}}}}{{2,5 \cdot {{10}^{29}}}} = 1 \cdot {10^5}\)also 10.000 Planeten Erde aus purem Gold auszahlen... Wer soll das wegtragen und wie soll man das je ausgeben?
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 4051
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seegrundstück - Aufgabe B_415
Teil b
Ein anderes Kreditinstitut stellt einen Tilgungsplan zur Rückzahlung des Kredits auf. Ein Ausschnitt dieses Tilgungsplans ist in der nachstehenden Tabelle dargestellt.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | 865 000 € | |||
1 | 51 467,50 € | 53 532,50 € | ||
2 | 48 282,32 € | -48 282,32 € | ||
3 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Annuität und die Restschuld im Jahr 1.
[1 Punkt]
Im Jahr 2 sind die beiden Einträge in den Spalten „Zinsanteil“ und „Tilgungsanteil“ bis auf das Vorzeichen gleich.
2. Teilaufgabe - Bearbeitungszeit 5:40
Beschreiben Sie die Auswirkungen auf die Restschuld im Jahr 2.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4112
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 09. Mai 2018 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Baugrundstücke - Aufgabe B_090
Teil d
Frau Marth nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 120.000 mit jährlich nachschüssigen Kreditrückzahlungen auf. Der vereinbarte Zinssatz beträgt 2,5 % p. a. Für die ersten zwei Jahre vereinbart Frau Marth Sonderbedingungen, die im nachstehenden Tilgungsplan dargestellt sind.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 120.000 | |||
1 | ? | € 0,00 | € 123.000 | |
2 | € 0,00 | ? | € 123.000 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Beträge für die beiden grau markierten Zellen im obigen Tilgungsplan.
[1 Punkt]
Ab dem Jahr 3 werden jährliche Annuitäten in Hohe von € 10.000 bezahlt.
2. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie, wie viele volle Annuitäten in Hohe von € 10.000 bezahlt werden müssen.
[1 Punkt]
Aufgabe 4354
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 08. Mai 2019 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Küchenkauf - Aufgabe B_453
Teil b
Frau Tomić benötigt für den Kauf der Küche einen Kredit in Höhe von € 20.000. Ein Bekannter von Frau Tomić bietet an, ihr das Geld zu einem fixen Zinssatz von 4 % p. a. zu leihen. Für die
Rückzahlung vereinbaren sie, dass am Ende des 1. Semesters nur die Zinsen zu bezahlen sind, danach sind Semesterraten in Hohe von jeweils € 2.000 fällig.
1. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie den äquivalenten Semesterzinssatz.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 11:20
Vervollständigen Sie die Zeilen für die Semester 1 und 2 des nachstehenden Tilgungsplans.
[2 Punkte]
Semester | Zinsanteil | Tilgungsanteil | Semesterrate | Restschuld |
0 | --- | --- | --- | € 20.000 |
1 | ||||
2 |
3. Teilaufgabe - Bearbeitungszeit 05:40
Erklären Sie, warum die folgende Behauptung richtig ist: „Eine Verdoppelung der Semesterrate
führt nicht zu einer Verdoppelung des Tilgungsanteils.“
[1 Punkt]
Aufgabe 4424
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Lagerhalle - Aufgabe B_484
Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.
Teil c
Ein anderes Kreditangebot enthält Sonderkonditionen für die Jahre 1 und 2. Diese Sonderkonditionen können dem Tilgungsplan entnommen werden:
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 180.000 | |||
1 | € 5.400 | € -5.400 | € 0 | € 185.400 |
2 | € 5.563 | € 180.000 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Jahreszinssatz für dieses Kreditangebot.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Erklären Sie mithilfe der Eintrage im Tilgungsplan, warum der Tilgungsanteil im Jahr 1 negativ ist. [1 Punkt]
3. Teilaufgabe - Bearbeitungszeit 5:40
Vervollständigen Sie die Zeile für das Jahr 2 im obigen Tilgungsplan.
[1 Punkt]
Aufgabe 4463
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 21. Mai 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Reisebus - Aufgabe B_516
Ein Reiseunternehmen plant, einen neuen Reisebus anzuschaffen.
Teil c
Für den Ankauf des Reisebusses nimmt das Reiseunternehmen einen Kredit zu einem Zinssatz von 3 % p. a. auf. Die Rückzahlung des Kredits erfolgt durch gleichbleibende jährliche Annuitäten. Einige Werte des Tilgungsplans sind in der nachstehenden Tabelle angegeben.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
2 | ||||
3 | € 1.059,93 | € 2.440,07 |
1. Teilaufgabe - Bearbeitungszeit 5:40
Tragen Sie in der obigen Tabelle die Höhe der Annuität für das Jahr 3 ein.
[0 / 1 P.]
Bei der weiteren Tilgung des Kredits verbleibt ein Restbetrag, der ein Jahr nach der letzten Vollrate bezahlt wird.
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie die Höhe dieses Restbetrags.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4512
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zinsentwicklung - Aufgabe B_528
Die Zinssätze für Kredite und Spareinlagen unterliegen zeitabhängigen Schwankungen.
Teil b
Bei Abschluss eines Kreditvertrags kann festgelegt werden, ob der Zinssatz während der gesamten Laufzeit konstant bleibt oder ob sich der Zinssatz entsprechend der aktuellen Marktlage immer wieder verändert. In der nachstehenden Tabelle ist ein Ausschnitt aus einem Tilgungsplan dargestellt.
Jahr | Zinsanteil | Tilgungsanteil | Annuität | Restschuld |
0 | € 50.000 | |||
1 | € 2.100,00 | € 4.900,00 | € 7.000,00 | € 45.100,00 |
2 | € 1.894,20 | € 5.105,80 | € 7.000 | € 39.994,20 |
3 | € 1.399,80 | € 7.000,00 |
1. Teilaufgabe - Bearbeitungszeit 05:40
Überprüfen Sie nachweislich, ob sich der Zinssatz innerhalb der dargestellten 3 Jahre verändert hat.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Tragen Sie in der obigen Tabelle die beiden fehlenden Beträge im Jahr 3 ein.
[0 / 1 P.]