Schnittwinkel zweier Ebenen
Hier findest du folgende Inhalte
Formeln
Lagebeziehung zweier Ebenen
Zwei Ebenen können zu einander parallel sein, identisch sein oder sich in einer Schnittgeraden schneiden
Schnittwinkel zweier Ebenen
Der Schnittwinkel zweier Ebenen - so sie sich überhaupt schneiden - entspricht dem spitzen Winkel zwischen den Normalvektoren der beiden Ebenen, wobei diese beiden Normalvektoren einen gemeinsamen Punkt auf der Schnittgerade der beiden Ebenen haben müssen.
1. Ebene, gegeben durch ihren Normalvektor:
\(\overrightarrow {{n_1}} = \left( {\matrix{ {{n_{1x}}} \cr {{n_{1x}}} \cr {{n_{1z}}} \cr } } \right)\)
2. Ebene, gegeben durch ihren Normalvektor:
\(\overrightarrow {{n_2}} = \left( {\matrix{ {{n_{2x}}} \cr {{n_{2y}}} \cr {{n_{2z}}} \cr } } \right)\)
Somit errechnet sich der Schnittwinkel zwischen den beiden Ebenen:
\(\eqalign{ & \varphi = \arccos \frac{{\left| {\overrightarrow {{n_1}} \circ \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} \cr & \varphi = \arccos \frac{{\left| {{n_{1x}} \cdot {n_{2x}} + {n_{1y}} \cdot {n_{2y}} + {n_{1z}} \cdot {n_{2z}}} \right|}}{{\sqrt {{n_{1x}}^2 + {n_{1y}}^2 + {n_{1z}}^2} .\sqrt {{n_{2x}}^2 + {n_{2y}}^2 + {n_{2z}}^2} }} \cr} \)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 6030
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Die Abbildung zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem
Zifferblatt anzeigt. Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (siehe nachfolgende Abbildung).
Dabei beschreibt das Rechteck ABCD mit \(A\left( {5\left| { - 4\left| 0 \right.} \right.} \right)\) und \(B\left( {5\left| {4\left| 0 \right.} \right.} \right)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\left( {2,5\left| {0\left| 2 \right.} \right.} \right)\) des Rechtecks ABCD dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10cm in der Realität. Die Horizontale wird im Modell durch die x1x2-Ebene beschrieben.
1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten des Punkts C.
2. Teilaufgabe a.2) 3 BE - Bearbeitungszeit: 7:00
Ermitteln Sie eine Gleichung der Ebene E, in der das Rechteck ABCD liegt, in Normalenform.
(mögliches Teilergebnis: \(E:4{x_1} + 5{x_3} - 20 = 0\))
Die Grundplatte ist gegenüber der Horizontalen um den Winkel α geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad φ des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^\circ \) gelten.
3. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20
Bestimmen Sie, für welchen Breitengrad φ die Sonnenuhr gebaut wurde.
Der Polstab wird im Modell durch die Strecke \(\left[ {MS} \right]{\rm{ mit }}S\left( {4,5\left| {0\left| {4,5} \right.} \right.} \right)\) dargestellt.
4. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20
Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht.
5. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie die Länge des Polstabs auf Zentimeter genau.
Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt t0 auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor
\(\overrightarrow u = \left( {\begin{array}{*{20}{c}} 6\\ 6\\ { - 13} \end{array}} \right)\)dargestellt.
6. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00
Weisen Sie nach, dass der Schatten der im Modell durch den Punkt S dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.
Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \(\left[ {BC} \right]\), um 12 Uhr durch den Mittelpunkt der Kante \(\left[ {AB} \right]\) und um 18 Uhr durch den Mittelpunkt der Kante \(\left[ {AD} \right]\).
7. Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass der (in Teilaufgabe c, Anm.) betrachtete Zeitpunkt t0 vor 12 Uhr liegt.
Im Verlauf des Vormittags überstreicht der Schatten des Polstabs auf der Grundplatte in gleichen Zeiten gleich große Winkel.
8. Teilaufgabe f) 3 BE - Bearbeitungszeit: 7:00
Bestimmen Sie die Uhrzeit auf Minuten genau, zu der der Schatten des Polstabs im Modell durch den Punkt B verläuft.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.