Parameterdarstellung von Geraden - 1369. Aufgabe 1_369
Aufgabe 1369: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 5. Aufgabe
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 1369
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 5. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Parameterdarstellung von Geraden
Gegeben ist eine Gerade g:
\(g:X = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right) + s \cdot \left( {\begin{array}{*{20}{c}} 2\\ { - 3}\\ 1 \end{array}} \right){\rm{ }}\)mit \({\text{s}} \in {\Bbb R}\)
Aufgabenstellung:
Welche der folgenden Geraden hi (i = 1, 2, ... , 5) mit ti ∈ ℝ (i = 1, 2, ... , 5) sind parallel zu g? Kreuzen Sie die beiden zutreffenden Antworten an!
- Gerade 1: \({h_1}:X = \left( {\begin{array}{*{20}{c}} 8\\ 2\\ 3 \end{array}} \right) + {t_1} \cdot \left( {\begin{array}{*{20}{c}} { - 3}\\ 1\\ 2 \end{array}} \right)\)
- Gerade 2: \({h_2}:X = \left( {\begin{array}{*{20}{c}} 3\\ 4\\ { - 7} \end{array}} \right) + {t_2} \cdot \left( {\begin{array}{*{20}{c}} 4\\ { - 6}\\ 2 \end{array}} \right)\)
- Gerade 3: \({h_3}:X = \left( {\begin{array}{*{20}{c}} 4\\ 1\\ 2 \end{array}} \right) + {t_3} \cdot \left( {\begin{array}{*{20}{c}} { - 2}\\ 1\\ { - 2} \end{array}} \right)\)
- Gerade 4: \({h_4}:X = \left( {\begin{array}{*{20}{c}} 3\\ 5\\ { - 1} \end{array}} \right) \cdot {t_4} \cdot \left( {\begin{array}{*{20}{c}} { - 2}\\ 3\\ { - 1} \end{array}} \right)\)
- Gerade 5: \({h_5}:X = \left( {\begin{array}{*{20}{c}} 1\\ 2\\ 4 \end{array}} \right) + {t_5} \cdot \left( {\begin{array}{*{20}{c}} 1\\ 2\\ { - 3} \end{array}} \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
