Lagebeziehung Gerade und Ebene
Eine Gerade kann eine Ebene schneiden, zur Ebene parallel verlaufen oder in der Ebene liegen. Um herauszufinden wie die Lagebeziehung ist, setzt man die Gleichung der Geraden in die Gleichung der Ebene ein.
Hier findest du folgende Inhalte
Formeln
Lagebeziehung zwischen Gerade und Ebene
Eine Gerade kann eine Ebene schneiden, zur Ebene parallel verlaufen oder in der Ebene liegen. Um herauszufinden wie die Lagebeziehung ist, setzt man die Gleichung der Geraden in die Gleichung der Ebene ein.
Entweder
- schneidet die Gerade die Ebene,
- Gleichsetzen von Gerade und Ebene führt zu genau einer Lösung
- verläuft die Gerade parallel zur Ebene
- Gleichsetzen von Gerade und Ebene führt zu genau keiner Lösung
- liegt die Gerade in der Ebene
- Gleichsetzen von Gerade und Ebene führt zu unendlich vielen Lösungen
Spurpunkt
Als Spurpunkt bezeichnet man den Schnittpunkt einer Geraden mit einer Ebene, die von zwei Achsen des Koordinatensystems aufgespannt wird.
- Sx ist der Durchstoßpunkt durch die yz-Ebene
- Sy ist der Durchstoßpunkt durch die xz-Ebene
- Sz ist der Durchstoßpunkt durch die xy-Ebene
Man bestimmt den Spurpunkt mit folgenden zwei Schritten:
- Abhängig vom Spurpunkt Si setzt man die i-te Zeile der Geradengleichung gleich Null und bestimmt den Wert von Lambda.
- Man setzt Lambda in die verbleibenden Zeilen der Geradengleichung ein und erhält so die fehlenden Komponenten des Spurpunkts
\(\begin{array}{l}
g:\overrightarrow u = \left( {\begin{array}{*{20}{c}}
{{A_x}}\\
{{A_y}}\\
{{A_z}}
\end{array}} \right) + \lambda \cdot \left( {\begin{array}{*{20}{c}}
{{r_x}}\\
{{r_y}}\\
{{r_z}}
\end{array}} \right)\\
{S_y} = {A_y} + \lambda \cdot {r_y} = 0 \to \lambda = - \dfrac{{{A_y}}}{{{r_y}}}\\
S = \left( {\begin{array}{*{20}{c}}
{{A_x}}\\
{{A_y}}\\
{{A_z}}
\end{array}} \right) - \dfrac{{{A_y}}}{{{r_y}}} \cdot \left( {\begin{array}{*{20}{c}}
{{r_x}}\\
{{r_y}}\\
{{r_z}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{A_x} - \dfrac{{{A_y} \cdot {r_x}}}{{{r_y}}}}\\
0\\
{{A_z} - \dfrac{{{A_y} \cdot {r_z}}}{{{r_y}}}}
\end{array}} \right)
\end{array}\)
Schnittpunkt Gerade und Ebene
Man setzt die Gleichung der Geraden mit der Gleichung der Ebene gleich. Der gemeinsame Punkt ist der Schnittpunkt.
\(\overrightarrow p + \lambda \overrightarrow v = \overrightarrow q + \sigma \overrightarrow a + \tau \overrightarrow b\)
Schnittpunkt: Gerade und Ebene in der Parameterform
\(\eqalign{ & g:\overrightarrow X = \overrightarrow p + \lambda \overrightarrow v = \left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + \lambda \left( {\matrix{ {{v_x}} \cr {{v_y}} \cr {{v_z}} \cr } } \right) \cr & E:\overrightarrow X = \overrightarrow q + \sigma \overrightarrow a + \tau \overrightarrow b = \left( {\matrix{ {{q_x}} \cr {{q_y}} \cr {{q_z}} \cr } } \right) + \sigma \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right) + \tau \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr {{b_z}} \cr } } \right) \cr}\)
Wir setzen nun die Gerade und die Ebene gleich, um den Schnittpunkt zu finden:
\(\left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + \lambda \left( {\matrix{ {{v_x}} \cr {{v_y}} \cr {{v_z}} \cr } } \right) = \left( {\matrix{ {{q_x}} \cr {{q_y}} \cr {{q_z}} \cr } } \right) + \sigma \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right) + \tau \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr {{b_z}} \cr } } \right)\)
Somit haben wir für x, y und z jeweils eine eigene Gleichung, also 3 Gleichungen aus denen wir die 3 Unbekannten \(\lambda ,\sigma {\text{ und }}\tau\) ermitteln können.
Schnittpunkt: Gerade und Ebene in der parameterfreien Form
\(\eqalign{ & g:\overrightarrow X = \overrightarrow p + \lambda \overrightarrow v = \left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + \lambda \left( {\matrix{ {{v_x}} \cr {{v_y}} \cr {{v_z}} \cr } } \right) \cr & E:{n_1} \cdot x + {n_2} \cdot y + {n_3} \cdot z + {c_1} = 0 \cr} \)
Aus der Geradengleichung ...
\(\eqalign{ & x = \left( {{p_x} + \lambda \cdot {v_x}} \right) \cr & y = \left( {{p_y} + \lambda \cdot {v_y}} \right) \cr & z = \left( {{p_z} + \lambda \cdot {v_z}} \right) \cr}\)
... und durch Einsetzen in die Ebenengleichung errechnet sich die einzige Unbekannte \(\lambda\)
\(\eqalign{ & {\rm{E:}}\,\,\,{{\rm{n}}_1} \cdot \left( {{p_x} + \lambda {v_x}} \right) + {n_2} \cdot \left( {{p_y} + \lambda {v_y}} \right) + {n_3} \cdot \left( {{p_z} + \lambda {v_z}} \right) + {c_1} \cr & \overrightarrow {0S} = \left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + \lambda \left( {\matrix{ {{v_x}} \cr {{v_y}} \cr {{v_z}} \cr } } \right) = \left( {\matrix{ {{S_x}} \cr {{S_y}} \cr {{S_z}} \cr } } \right) \cr}\)
Schnittwinkel zwischen Gerade und Ebene
Der Schnittwinkel j zwischen einer Geraden und einer Ebene ist der Winkel zwischen der Geraden und ihrer senkrechten Projektion auf die Ebene.
Gerade, gegeben durch ihren Richtungsvektor:
\(\overrightarrow r = \left( {\matrix{ {{r_x}} \cr {{r_y}} \cr {{r_z}} \cr } } \right)\)
Ebene, gegeben durch ihren Normalvektor:
\(\overrightarrow n = \left( {\matrix{ {{n_x}} \cr {{n_y}} \cr {{n_z}} \cr } } \right)\)
Daraus ergibt sich der Schnittwinkel wie folgt:
\(\eqalign{ & \varphi = \arcsin {{\left| {\overrightarrow r \cdot \overrightarrow n } \right|} \over {\left| {\overrightarrow r } \right| \cdot \left| {\overrightarrow n } \right|}} \cr & \varphi = \arcsin {{\left| {{r_x} \cdot {n_x} + {r_y} \cdot {n_y} + {r_z} \cdot {n_z}} \right|} \over {\sqrt {{r_x}^2 + {r_y}^2 + {r_z}^2} .\sqrt {{n_x}^2 + {n_y}^2 + {n_z}^2} }} \cr}\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 6029
Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie
Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
In einem kartesischen Koordinatensystem sind
- die Ebene \(E:{x_1} + {x_3} = 2\)
- der Punkt \(A\left( {0\left| {\sqrt 2 \left| 2 \right.} \right.} \right)\)
- und die Gerade \(g:\overrightarrow X = \overrightarrow A + \lambda \cdot \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right),\,\,\,\lambda \in {\Bbb R }\)
gegeben.
1. Teilaufgabe a.1) 1 BE - Bearbeitungszeit: 2:20
Beschreiben Sie, welche besondere Lage die Ebene E im Koordinatensystem hat.
2. Teilaufgabe a.2) 1 BE - Bearbeitungszeit 2:20
Weisen Sie nach, dass die Ebene E die Gerade g enthält.
3. Teilaufgabe a.3) 2 BE - Bearbeitungszeit: 4:40
Geben Sie die Koordinaten der Schnittpunkte von E mit der x1-Achse und mit der x3 -Achse an.
4. Teilaufgabe a.4) 2 BE - Bearbeitungszeit: 4:40
Veranschaulichen Sie die Lage der Ebene E sowie den Verlauf der Geraden g in einem kartesischen Koordinatensystem (vgl. Abbildung).
Die x1x2-Ebene beschreibt modellhaft eine horizontale Fläche, auf der eine Achterbahn errichtet wurde. Ein gerader Abschnitt der Bahn beginnt im Modell im Punkt A und verläuft entlang der Geraden g. Der Vektor
\(\overrightarrow v = \left( {\begin{array}{*{20}{c}} { - 1}\\ {\sqrt 2 }\\ 1 \end{array}} \right)\)
beschreibt die Fahrtrichtung auf diesem Abschnitt.
5. Teilaufgabe b.1) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie im Modell die Größe des Winkels, unter dem dieser Abschnitt der Achterbahn gegenüber der Horizontalen ansteigt.
6. Teilaufgabe b.2) 2 BE - Bearbeitungszeit: 4:40
Berechnen Sie im Modell die zugehörige Steigung dieses Abschnitts in Prozent.
An den betrachteten geraden Abschnitt der Achterbahn schließt sich – in Fahrtrichtung gesehen – eine Rechtskurve an, die im Modell durch einen Viertelkreis beschrieben wird, der in der Ebene E verläuft und den Mittelpunkt \(M\left( {0\left| {3 \cdot \sqrt 2 \left| 2 \right.} \right.} \right)\) hat. Das Lot von M auf g schneidet g im Punkt B. Im Modell stellt B den Punkt der Achterbahn dar, in dem der gerade Abschnitt endet und die Kurve beginnt.
7. Teilaufgabe c.1) 2 BE - Bearbeitungszeit: 4:40
Bestimmen Sie die Koordinaten von B.
8. Teilaufgabe c.2) 3 BE - Bearbeitungszeit: 7:00
Berechnen Sie den Kurvenradius im Modell.
(Teilergebnis: \(B\left( { - 1\left| {2 \cdot \sqrt 2 \left| 3 \right.} \right.} \right)\)
Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt C beschrieben.
9. Teilaufgabe d) 2 BE - Bearbeitungszeit: 4:40
Begründen Sie, dass für den Ortsvektor des Punkts C gilt: \(\overrightarrow C = \overrightarrow M + \overrightarrow v \)
Ein Wagen der Achterbahn durchfährt den Abschnitt, der im Modell durch die Strecke [AB] und den Viertelkreis von B nach C dargestellt wird, mit einer durchschnittlichen Geschwindigkeit von 15 m/s.
10. Teilaufgabe e) 4 BE - Bearbeitungszeit: 9:20
Berechnen Sie die Zeit, die der Wagen dafür benötigt, auf Zehntelsekunden genau, wenn eine Längeneinheit im Koordinatensystem 10 m in der Realität entspricht.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.