Konfidenzintervall
Konfidenzintervalle definieren einen Bereich, in dem man mit einer bestimmten Wahrscheinlichkeit darauf vertrauen darf, dass sich der wahre Wert darin befindet.
Hier findest du folgende Inhalte
Formeln
Konfidenzintervall für Normal- bzw. Standardnormalverteilung
Bei der Ermittlung statistischer Parameter wie Mittelwert oder Standardabweichung prüft man selten alle möglichen Ergebnisse, sondern man beschränkt sich auf eine Stichprobe. Dadurch ist die Messung aber Ungenauigkeiten unterworfen.
Das Konfidenzintervall definiert einen Bereich, in dem man mit einer bestimmten Wahrscheinlichkeit (dem Konfidenzniveau \(\gamma\)) darauf vertrauen darf, dass sich der wahre Wert einer Zufallsgröße darin befindet. Typische Werte für das Konfidenzniveau liegen bei 90%, 95% oder bei 99%. Umgekehrt kann man die Frage nach dem erforderlichen Stichprobenumfang klären, wenn man ein konkretes Konfidenzintervall vorgibt.
Vereinfachte Merksätze:
- Größere Stichprobe ergibt ein schmäleres Konfidenzintervall (Hochrechnung bei Wahlen: höherer Auszählungsgrad → geringere Schwankungsbreite)
- Größere Sicherheit (höheres Konfidenzniveau = höherer Prozentsatz beim Konfidenzintervall) bedeutet breiteres Konfidenzintervall
- Je näher der Prozentsatz an der 50 % Grenze liegt, umso breiter wird das Konfidenzintervall. Das heißt je deutlicher Zustimmung bzw. Ablehnung sind, umso schmäler wird das Konfidenzintervall
Für diejenigen Werte p, in deren das \(\gamma\) Konfidenzintervall der Wert h liegt, gilt
\({p_{1,2}} = \left[ {h - z \cdot \sqrt {\dfrac{{h \cdot \left( {1 - h} \right)}}{n}} ;\,\,\,\,h + z \cdot \sqrt {\dfrac{{h \cdot \left( {1 - h} \right)}}{n}} } \right]\)
h | relative Häufigkeit in einer Stichprobe |
p | unbekannter relativer Anteil in der Grundgesamtheit |
\(\gamma\) | Konfidenz- / Vertrauensniveau |
n | Umfang der Stichprobe |
z | Ist aus der Tabelle der Standardnormalverteilung abzulesen
Für das 95%-Konfidenzintervall gilt beispielhaft: \(\eqalign{ & 2 \cdot \Phi \left( z \right) - 1 = 0,95 \cr & \Phi \left( z \right) = \dfrac{{1,95}}{2} = 0,975 \cr} \) Aus der Tabelle der Standardnormalverteilung können wir ablesen: \(z\left( {0,975} \right) = 1,96\) |
Illustration zur Veranschaulichung:
Die Fläche unter der gaußschen Glockenkurve und zwischen den Intervallgrenzen p1 bzw. p2 errechnet sich zu \(2\Phi \left( z \right) - 1 = \gamma \).
Das zugehörige z kann man auf 2 Arten aus den entsprechenden Tabellen ermitteln:
- man geht mit dem Wert \(\Phi \left( z \right) = \dfrac{{\gamma + 1}}{2}\) in eine \(\Phi \left( z \right) \Rightarrow z\) Tabelle und liest z ab
- man geht mit dem Wert \(D\left( z \right) = \gamma \) in eine \(D\left( z \right) \Rightarrow z\) Tabelle und liest z ab
α von 5 % bzw. z(0,975)=1,96 bedeutet, dass das Intervall den gesuchten Wert der Grundgesamtheit mit 95 % Wahrscheinlichkeit enthält.
Zweiseitiges (1 – α)-Konfidenz- /Schwankungsintervall für einen Einzelwert einer normalverteilten Zufallsvariablen
\(\left[ {\mu - {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \sigma ;\,\,\,\,\,\mu + {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \sigma } \right]\)
Zweiseitiges (1 – α)-Konfidenz- /Schwankungsintervall für den Stichprobenmittelwert normalverteilter Werte
\(\left[ {\mu - {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \dfrac{\sigma }{{\sqrt n }};\,\,\,\,\,\mu + {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \sigma \cdot \dfrac{\sigma }{{\sqrt n }}} \right]\)
Zweiseitiges (1– α)-Konfidenz- /Schwankungsintervall für den Erwartungswert einer normalverteilten Zufallsvariablen bei bekanntem σ und bekanntem Mittelwert der Zufallsstichprobe
\(\left[ {\overline x - {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \dfrac{\sigma }{{\sqrt n }};\,\,\,\,\,\overline x + {z_{1\, - \,\dfrac{\alpha }{2}}} \cdot \dfrac{\sigma }{{\sqrt n }}} \right]\)
\(\overline x\) | Stichprobenmittelwert |
\({s_{\overline x }} = {s_{n - 1}}\) | Standardabweichung einer Stichprobe |
n | Stichprobenumfang |
\({z_{1\, - \,\dfrac{\alpha }{2}}}\) |
\(\left( {1 - \dfrac{\alpha }{2}} \right)\)- Quantil der Standardnormalverteilung, wobei: \(\begin{array}{l} P\left( { - z \le Z \le z} \right) = 90\% \to z = 1,654\\ P\left( { - z \le Z \le z} \right) = 95\% \to z = 1,960\\ P\left( { - z \le Z \le z} \right) = 99\% \to z = 2,576 \end{array}\) |
Konfidenzintervall für die studentsche t-Verteilung
Wenn die Standardabweichung σ der Grundgesamtheit unbekannt ist, man aber die Standardabweichung s der Stichprobe kennt und man nur einen kleinen Stichprobenumfang hat, benützt man anstelle der Normalverteilung die (studentsche) t-Verteilung.
Die Grundgesamtheit muss dabei (annähernd) normalverteilt sein. Die t-Verteilung hat ein glockenförmiges Aussehen, die Fläche unter der Glocke ist 1 und sie ist symmetrisch um Null. Median, Modus und Mittelwert sind null.
- Der 1. Parameter der t-Verteilung ist deren Freiheitsgrad f, der sich zu f=n-1 ergibt.
- Stichprobenumfang n=8 → f=8-1=7
- Der 2. Parameter ergibt sich gemäß \(\left( {1 - \dfrac{\alpha }{2}} \right)\)
- zweiseitiger 95% Vertrauensbereich: \(\alpha = 5\% \overset{\wedge}\to{=} 0,05 \to 1 - \frac{{0,05}}{2} = 0,975\)
Mit den beiden Werten geht geht man in die t-Tabelle und liest wie folgt ab: \({t_{7;0,975}} \approx 2,3646{\text{ }}\)
Zweiseitiges (1– α)- Konfidenz- /Schwankungsintervall für den Erwartungswert einer normalverteilten Zufallsvariablen bei unbekanntem σ
\(\left[ {\overline x - {t_{f;\,\,1\, - \,\dfrac{\alpha }{2}}} \cdot \dfrac{{{s_{n - 1}}}}{{\sqrt n }};\,\,\,\,\,\overline x + {t_{f;\,\,1\, - \,\dfrac{\alpha }{2}}} \cdot \dfrac{{{s_{n - 1}}}}{{\sqrt n }}} \right]\)
mit
\({t_{f;\,\,\,1\, - \,\dfrac{\alpha }{2}}}\) | \(\left( {1 - \dfrac{\alpha }{2}} \right)\)- Quantil der t-Verteilung mit f Freiheitsgraden |
α von 5 % (bei der Normalverteilung: z(0,975)=1,96) bedeutet, dass das Intervall den gesuchten Wert der Grundgesamtheit mit 95 % Wahrscheinlichkeit enthält. \({\dfrac{\alpha }{2}}\buildrel \wedge \over =2,5% \) der Werte liegen links vom Intervall und \({\dfrac{\alpha }{2}}\buildrel \wedge \over =2,5% \) der Werte liegen rechts vom Intervall.
Die Berechnung des Konfidenzintervalls kann z.B. mit dem Wahrscheinlichkeitsrechner von GeoGebra erfolgen:
Wahrscheinlichkeitsrechner
- Statistik
- T-Schätzung eines Mittelwerts
- Eingabe von 4 Werten erforderlich:
- Konfidenzniveau:
- Mittelwert der Stichprobe:
- Standardabweichung s der Stichprobe:
- Größe n der Stichprobe
- Eingabe von 4 Werten erforderlich:
- T-Schätzung eines Mittelwerts
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1190
AHS - 1_190 & Lehrstoff: WS 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Konfidenzintervall
Von einer Stichprobe sind jeweils der Stichprobenumfang n und die relative Häufigkeit h eines beobachteten Merkmals gegeben.
- Konfidenzintervall A:
- Konfidenzintervall B:
- Konfidenzintervall C:
- Konfidenzintervall D:
- Konfidenzintervall E:
- Konfidenzintervall F:
Aufgabenstellung:
Ordnen Sie jeder Stichprobe das richtige Konfidenzintervall (aus A bis F) für das vorgegebene Konfidenzniveau γ (Sicherheitsniveau) zu!
Stichprobe S | Deine Antwort |
1=\(\eqalign{ & n = 1000 \cr & h = 0,3 \cr & \gamma = 0,60 \cr} \) |
|
2=\(\eqalign{ & n = 1000 \cr & h = 0,3 \cr & \gamma = 0,95 \cr}\) |
|
3=\(\eqalign{ & n = 500 \cr & h = 0,3 \cr & \gamma = 0,99 \cr}\) | |
4=\(\eqalign{ & n = 1000 \cr & h = 0,4 \cr & \gamma = 0,50 \cr}\) |
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1239
AHS - 1_239 & Lehrstoff: WS 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wähleranteil
Bei einer Stichprobe von n = 500 Personen gaben 120 Personen an, sie würden die Partei A wählen.
Aufgabenstellung
Geben Sie das 95-%-Konfidenzintervall KI für den Wähleranteil der Partei A an!
Aufgabe 1308
AHS - 1_308 & Lehrstoff: WS 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Linkshänder
Bei einer Umfrage in einem Bezirk werden 500 Personen befragt, ob sie Linkshänder sind. Als Ergebnis der Befragung wird das 95-%-Konfidenzintervall [0,09; 0,15] für den Anteil der Linkshänder in der Bezirkszeitung bekanntgegeben.
- Aussage 1: Ungefähr 60 Personen haben angegeben, Linkshänder zu sein.
- Aussage 2: Hätte man 10 000 Personen befragt, wäre das 95-%-Konfidenzintervall schmäler geworden.
- Aussage 3: Das Konfidenzintervall wäre breiter, wenn der Anteil der Linkshänder in der Umfrage kleiner gewesen wäre.
- Aussage 4: Der Anteil der Linkshänder im gesamten Bezirk liegt jedenfalls zwischen 9 % und 15 %.
- Aussage 5: Das entsprechende 99-%-Konfidenzintervall ist breiter als das 95-%-Konfidenzintervall.
Aufgabenstellung
Welche der nachstehenden Aussagen können Sie aufgrund dieses Ergebnisses tätigen? Kreuzen Sie die zutreffende(n) Aussage(n) an!
Aufgabe 1321
AHS - 1_321 & Lehrstoff: WS 4.1
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Essgewohnheiten
Um die Essgewohnheiten von Jugendlichen zu untersuchen, wurden 400 Jugendliche eines Bezirks zufällig ausgewählt und befragt. Dabei gaben 240 der befragten Jugendlichen an, täglich zu frühstucken.
Aufgabenstellung:
Berechnen Sie aufgrund des in der Umfrage erhobenen Stichprobenergebnisses ein 99-%-Konfidenzintervall für den tatsachlichen (relativen) Anteil p derjenigen Jugendlichen dieses Bezirks, die täglich frühstucken!
Aufgabe 1446
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Breite eines Konfidenzintervalls
Bei einer Meinungsbefragung wurden 500 zufällig ausgewählte Bewohner/innen einer Stadt zu ihrer Meinung bezüglich der Einrichtung einer Fußgängerzone im Stadtzentrum befragt. Es sprachen sich 60 % der Befragten für die Einrichtung einer solchen Fußgängerzone aus, 40 % sprachen sich dagegen aus.
Als 95-%-Konfidenzintervall für den Anteil der Bewohner/innen dieser Stadt, die die Einrichtung einer Fußgängerzone im Stadtzentrum befürworten, erhalt man mit Normalapproximation das Intervall [55,7 %; 64,3 %].
- Aussage 1: Das Konfidenzintervall wäre breiter, wenn man einen größeren Stichprobenumfang gewählt hatte und der relative Anteil der Befürworter/innen gleich groß geblieben wäre.
- Aussage 2: Das Konfidenzintervall wäre breiter, wenn man ein höheres Konfidenzniveau (eine höhere Sicherheit) gewählt hatte.
- Aussage 3: Das Konfidenzintervall wäre breiter, wenn man die Befragung in einer größeren Stadt durchgeführt hatte.
- Aussage 4: Das Konfidenzintervall wäre breiter, wenn der Anteil der Befürworter/innen in der Stichprobe großer gewesen wäre.
- Aussage 5: Das Konfidenzintervall wäre breiter, wenn der Anteil der Befürworter/innen und der Anteil der Gegner/innen in der Stichprobe gleich groß gewesen waren.
Aufgabenstellung:
Kreuzen Sie die beiden zutreffenden Aussagen an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1470
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2016 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Vergleich zweier Konfidenzintervalle
Auf der Grundlage einer Zufallsstichprobe der Größe n1 gibt ein Meinungsforschungsinstitut für den aktuellen Stimmenanteil einer politischen Partei das Konfidenzintervall [0,23; 0,29] an. Das zugehörige Konfidenzniveau (die zugehörige Sicherheit) beträgt γ1. Ein anderes Institut befragt n2 zufällig ausgewählte Wahlberechtigte und gibt als entsprechendes Konfidenzintervall mit dem Konfidenzniveau (der zugehörigen Sicherheit) γ2 das Intervall [0,24; 0,28] an. Dabei verwenden beide Institute dieselbe Berechnungsmethode.
Aufgabenstellung:
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
- Unter der Annahme von n1 = n2 kann man aus den Angaben ___1___ folgern;
- Unter der Annahme von γ1 = γ2 kann man aus den Angaben ___2___ folgern.
1 | |
\({\gamma _1} < {\gamma _2}\) | A |
\({\gamma _1} = {\gamma _2}\) | B |
\({\gamma _1} > {\gamma _2}\) | C |
2 | |
\({n_1} < {n_2}\) | I |
\({n_1} = {n_2}\) | II |
\({n_1} > {n_2}\) | III |
Aufgabe 1494
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2016 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
500-Euro-Scheine in Österreich
Bei einer repräsentativen Umfrage in Österreich geht es um die in Diskussion stehende Abschaffung der 500-Euro-Scheine. Es sprechen sich 234 von 1 000 Befragten für eine Abschaffung aus.
Aufgabenstellung:
Geben Sie ein symmetrisches 95-%-Konfidenzintervall für den relativen Anteil der Österreicherinnen und Österreicher, die eine Abschaffung der 500-Euro-Scheine in Österreich befürworten, an!
Aufgabe 1542
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 10. Mai 2017 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Wahlprognose
Um den Stimmenanteil einer bestimmten Partei A in der Grundgesamtheit zu schätzen, wird eine zufällig aus allen Wahlberechtigten ausgewählte Personengruppe befragt. Die Umfrage ergibt für den Stimmenanteil ein 95-%-Konfidenzintervall von [9,8%; 12,2%].
- Aussage 1: Die Wahrscheinlichkeit, dass eine zufällig ausgewählte wahlberechtigte Person die Partei A wählt, liegt sicher zwischen 9,8 % und 12,2 %.
- Aussage 2: Ein anhand der erhobenen Daten ermitteltes 90-%-Konfidenzintervall hatte eine geringere Intervallbreite.
- Aussage 3: Unter der Voraussetzung, dass der Anteil der Partei-A-Wähler/innen in der Stichprobe gleich bleibt, wurde eine Vergrößerung der Stichprobe zu einer Verkleinerung des 95-%-Konfidenzintervalls führen.
- Aussage 4: 95 von 100 Personen geben an, die Partei A mit einer Wahrscheinlichkeit von 11 % zu wählen.
- Aussage 5: Die Wahrscheinlichkeit, dass die Partei A einen Stimmenanteil von mehr als 12,2 % erhält, beträgt 5 %.
Aufgabenstellung:
Welche der folgenden Aussagen sind in diesem Zusammenhang auf jeden Fall korrekt? Kreuzen Sie die beiden zutreffenden Aussagen an!
Aufgabe 1589
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. September 2017 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Konfidenzintervall
Für eine Wahlprognose wird aus allen Wahlberechtigten eine Zufallsstichprobe ausgewählt. Von 400 befragten Personen geben 80 an, die Partei Y zu wählen.
Aufgabenstellung:
Geben Sie ein symmetrisches 95-%-Konfidenzintervall für den Stimmenanteil der Partei Y in der Grundgesamtheit an!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1685
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Telefonumfrage
Bei einer repräsentativen Telefonumfrage mit 400 zufällig ausgewählten Personen erhält man für den relativen Anteil der Befürworter/innen von kürzeren Sommerferien den Wert 20 %.
Aufgabenstellung:
Zeigen Sie durch eine Rechnung, dass das Intervall [16,0 %; 24,0 %] ein symmetrisches 95-%-Konfidenzintervall für den relativen Anteil p der Befürworter/innen in der gesamten Bevölkerung sein kann (wobei die Intervallgrenzen des Konfidenzintervalls gerundete Werte sind)!
Aufgabe 1733
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2019 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Sonntagsfrage
Sonntagsfrage nennt man in der Meinungsforschung die Frage „Welche Partei wurden Sie wählen, wenn am kommenden Sonntag Wahlen waren?“. Bei einer solchen Sonntagsfrage, bei der die Parteien A und B zur Auswahl standen, gaben 234 von 1 000 befragten Personen an, Partei A zu wählen. Bei der darauffolgenden Wahl lag der tatsächliche Anteil der Personen, die die Partei A gewählt haben, bei 29,5 %.
Aufgabenstellung:
Ermitteln Sie auf Basis dieses Umfrageergebnisses ein symmetrisches 95-%-Konfidenzintervall für den (unbekannten) Stimmenanteil der Partei A und geben Sie an, ob der tatsachlich Anteil in diesem Intervall enthalten ist.
[0 / 1 Punkt]
Aufgabe 1781
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 24. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Konditionierungsexperiment
Bei einem Konditionierungsexperiment lernen Schäferhunde die Bedienung eines Mechanismus, um Futter zu erhalten. Nach einer Trainingsphase, an der 50 Schäferhunde teilnehmen, können 40 von ihnen den Mechanismus bedienen.
Der relative Anteil dieser Schäferhunde, die nach der Trainingsphase den Mechanismus bedienen können, wird mit h bezeichnet.
Aus diesen Daten wird ein um h symmetrisches Konfidenzintervall [a; 0,91] mit a ∈ ℝ für den unbekannten Anteil p aller Schäferhunde ermittelt, die nach einer solchen Trainingsphase den Mechanismus bedienen können.
Aufgabenstellung:
Ermitteln Sie die untere Grenze a des Konfidenzintervalls.