Kino - Aufgabe B_519
Aufgabe B_519: BHS Matura vom 19. September 2021 - Teil-B Aufgabe mit 3 Teilaufgaben
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4486
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil a
Personen, die ein Kino besuchen, können Geld für 3 verschiedene Bereiche ausgeben:
- K … Menge der Personen, die für das Kinoticket Geld ausgeben
- P … Menge der Personen, die für das Parkticket Geld ausgeben
- V … Menge der Personen, die für die Verpflegung Geld ausgeben
1. Teilaufgabe - Bearbeitungszeit 05:40
Ordnen Sie den beiden Mengen jeweils die zutreffende Beschreibung aus A bis D zu.
[0 / 1 P.]
- Menge 1:
- Menge 2:
- Beschreibung A: Menge der Personen, die nur für das Kinoticket Geld ausgeben
- Beschreibung B: Menge der Personen, die für das Kinoticket Geld ausgeben
- Beschreibung C: Menge der Personen, die sowohl für das Kinoticket als auch für das Parkticket Geld ausgeben
- Beschreibung D: Menge der Personen, die entweder für das Kinoticket oder für das Parkticket oder für beides Geld ausgeben
Die Ergebnisse einer Befragung sind im nachstehenden Venn-Diagramm dargestellt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Beschreiben Sie die Bedeutung der Zahl 12 im obigen Venn-Diagramm im gegebenen Sachzusammenhang.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie, wie viel Prozent der befragten Personen in der Menge K ∩ P ∩ V enthalten sind.
[0 / 1 P.]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 4487
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil b
Die nachstehende Tabelle gibt die jährlichen Nettoeinnahmen aller Kinos in Österreich für einige Jahre an.
Jahr |
2005 |
2006 |
2011 |
2012 |
2015 |
jährliche Nettoeinnahmen in Millionen Euro |
94,8 |
104,3 |
115,7 |
118,5 |
127,2 |
Jahr | 2005 | 2006 | 2011 | 2012 | 2015 |
jährliche Nettoeinnahmen in Millionen Euro | 94,8 | 104,3 | 115,7 | 118,5 | 127,2 |
Datenquelle: https://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/k… [04.08.2021].
Die jährlichen Nettoeinnahmen in Millionen Euro sollen in Abhängigkeit von der Zeit t durch die lineare Funktion f beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 05:40
Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion f auf.
Wählen Sie t = 0 für das Jahr 2005.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Interpretieren Sie den Wert der Steigung von f im gegebenen Sachzusammenhang.
[0 / 1 P.]
3. Teilaufgabe - Bearbeitungszeit 05:40
Zeichnen Sie im nachstehenden Koordinatensystem den Graphen von f ein.
[0 / 1 P.]
Aufgabe 4488
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 17. September 2021 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kino - Aufgabe B_519
Teil c
Ein Kino zeigt einen bestimmten Film gleichzeitig in 3 Kinosälen.
- Im Kinosaal X wird der Film in der Standardversion gezeigt. Hier kostet ein Ticket € 14,80.
- Im Kinosaal Y wird der Film in 3D gezeigt. Hier kostet ein Ticket € 17.
- Im Kinosaal Z wird der Film im „Director’s Cut“ gezeigt. Hier kostet ein Ticket € 19,30.
- Insgesamt wurden 120 Tickets verkauft und € 2.067 eingenommen.
- Für Kinosaal Z wurden 25 % mehr Tickets als für Kinosaal X verkauft.
1. Teilaufgabe - Bearbeitungszeit 05:40
Erstellen Sie ein Gleichungssystem zur Berechnung der Anzahl der jeweils verkauften Tickets für die Kinosäle X, Y und Z.
[0 / 1 P.]
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Anzahl der jeweils verkauften Tickets für die Kinosäle X, Y und Z.
[0 / 1 P.]