Gerade Funktion
Gerade Funktionen sind symmetrisch zur y-Achse. Spiegelt man die Funktionswerte mit positivem x um die y-Achse, so erhält man die Funktionswerte mit negativem x.
Hier findest du folgende Inhalte
Formeln
Gerade und ungerade Funktionen
Abhängig vom Symmetrieverhalten unterscheidet man zwischen geraden und ungeraden Funktionen.
Gerade Funktion
Gerade Funktionen sind symmetrisch zur y-Achse. Spiegelt man die Funktionswerte mit positivem x um die y-Achse, so erhält man die Funktionswerte mit negativem x.
\(f\left( x \right) = f\left( { - x} \right)\)
Beispiele für gerade Funktionen:
- die konstante Funktion \(f\left( x \right) = c\)
- die Betragsfunktion \(f\left( x \right) = \left| x \right|\)
- die Potenzfunktion \(f\left( x \right) = a \cdot {x^n}{\text{ mit }}a \ne 0{\text{ und n gerade}}\)
- die Polynomfunktion \({\text{f}}\left( x \right) = {a_0} + {a_1} \cdot x + {a_2} \cdot {x^2} + ... + {a_n} \cdot {x^n}{\text{ mit }}{{\text{a}}_1},{a_3},{a_{ungerade}} = 0\)
- die Kosinusfunktion \(f\left( x \right) = \cos \left( x \right)\)
- die Sekansfunktion \(f\left( x \right) = \sec \left( x \right)\)
Ungerade Funktion
Ungerade Funktionen sind symmetrisch zum Ursprung. Dreht man die Funktionswerte mit positivem x um 180° um den Ursprung, so erhält man die Funktionswerte mit negativem x.
\(f\left( x \right) = - f\left( { - x} \right)\)
Beispiele für ungerade Funktionen
- die Vorzeichenfunktion \(f\left( x \right) = \operatorname{sgn} \left( x \right)\)
- die identische Funktion \(f\left( x \right) = x\)
- die Potenzfunktion \(f\left( x \right) = a \cdot {x^n}{\text{ mit }}a \ne 0{\text{ und n ungerade}}\)
- die Polynomfunktion \({\text{f}}\left( x \right) = {a_0} + {a_1} \cdot x + {a_2} \cdot {x^2} + ... + {a_n} \cdot {x^n}{\text{ mit }}{{\text{a}}_0},{a_2},{a_{gerade}} = 0\)
- die Sinusfunktion \(f\left( x \right) = \sin \left( x \right)\)
- die Tangensfunktion \(f\left( x \right) = \tan \left( x \right)\)
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Potenzfunktionen
Potenzfunktionen sind Funktionen, bei denen x zu einer höheren als der 1. Potenz vorkommt.
\(\eqalign{ & f\left( x \right) = c \cdot {x^n}{\text{ }}...{\text{Potenzfunktion}} \cr & f\left( x \right) = c \cdot {x^{2n}}{\text{ }}...{\text{gerade Funktion}} \cr & f\left( x \right) = c \cdot {x^{2n + 1}}{\text{ }}...{\text{ungerade Funktion}} \cr}\)
Exponent | Exponent | |
n ist gerade | n ist positiv bzw. xn |
|
n ist ungerade | n ist positiv bzw. xn |
|
n ist gerade | n ist negativ bzw. \({x^{ - n}} = \dfrac{1}{{{x^n}}}\) |
|
n ist ungerade | negativ bzw. \({x^{ - n}} = \dfrac{1}{{{x^n}}}\) |
|
n = 0 | \(f\left( x \right) = c \cdot {x^0} = c\) |
|
Verschiebungen vom Graph zufolge von Parametern
- (x+n): Der Graph ist um n nach links, also entlang der negativen x-Achse, verschoben
- (x-n): Der Graph ist um n nach rechts, also entlang der positiven x-Achse, verschoben
- \(c \cdot {x^z} + b\): Der Graph wird nach oben, also entlang der positiven y-Achse, verschoben
- b=0: Der Graph verläuft durch den Ursprung
- \(c \cdot {x^z} - b\): Der Graph wird nach unten, also entlang der negativen y-Achse, verschoben
Unterschied Potenzfunktion zu Exponentialfunktion
Potenzfunktion
Bei der Potenzfunktion fungiert die Variable x als Basis, während der Exponent n eine Konstante ist → weitere Details siehe unter "Potenzfunktion"
\(f\left( x \right) = c \cdot {x^n}\)
Exponentialfunktion
Bei der Exponentialfunktion fungiert die Variable x als Exponent, während die Basis a eine Konstante ist → weitere Details siehe unter "Exponentialfunktion"
\(f\left( x \right) = c \cdot {a^x}\)
Grafisches Differenzieren
Beim grafischen Differenzieren leitet man Aussagen über den Verlauf einer Funktion aus dem Verlauf ihrer 1. und 2. Ableitung ab, bzw. umgekehrt
f hat Extremstelle (HP oder TP) | f' hat NST | |
f hat Wendepunkt | f' hat Extremstelle (HP oder TP) | f'' hat NST |
f hat Sattelpunkt | f' hat HP oder TP auf x-Achse | f'' hat NST |
f steigt streng monoton | f' liegt oberhalb der x-Achse bzw. f' > 0 | |
f sinkt streng monoton | f' liegt unterhalb der x-Achse bzw. f' < 0 | |
f ist linksgekrümmt, positiv gekrümmt bzw. konvex | f' ist steigend | f'' > 0 |
f ist rechtsgekrümmt, negativ gekrümmt bzw. konkav | f' ist fallend | f'' < 0 |
Merkhilfe: NEW-Regel
N = Nullstelle; E=Extremstelle (HP, TP); W=Wendestelle
F(x) | f(x) | N | E | W | ||
f(x) | f'(x) | N | E | W | ||
f'(x) | f''(x) | N | E | W |
Zusammenhänge zwischen der Funktion, ihrer ersten und ihrer zweiten Ableitung beim grafisches Differenzieren
Funktion f(x) | Ableitung f‘(x) | Ableitung f"(x) |
f hat eineExtremstelle |
f‘ hat eine Nullstelle | keine Aussage möglich |
f hat einen Wendepunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Extremwert: Hochpunkt | f" hat eine Nullstelle |
f hat einen Wendepunktund die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Extremwert: Tiefpunkt | f" hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von positiv \(\cup\) auf negativ \(\cap\). |
f‘ hat einen Hochpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist | f‘‘ hat eine Nullstelle |
f hat einen Sattelpunkt und die Krümmung ändert sich von negativ \(\cap\) auf positiv \(\cup\). |
f‘ hat einen Tiefpunkt der auf der x-Achse liegt d.h. der auch Nullstelle ist |
f‘‘ hat eine Nullstelle |
f steigt streng monoton an d.h. k>0 | f‘ liegt oberhalb der x-Achse | |
f sinkt streng monoton d.h. k<0 | f‘ liegt unterhalb der x-Achse | |
f ist symmetrisch zur y-Achse d.h. f ist eine gerade Funktion |
f‘ ist punktsymmetrisch zum Ursprung d.h. f‘ ist eine ungerade Funktion | f‘‘ ist symmetrisch zur y-Achse, d.h. f‘‘ ist eine gerade Funktion |
f ist punktsymmetrisch zum Ursprung d.h. f ist eine ungerade Funktion | f‘ ist symmetrisch zur y-Achse d.h. f‘ ist eine gerade Funktion | f‘‘ ist punktsymmetrisch zum Ursprung d.h. f‘‘ ist eine ungerade Funktion |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung | |
Die Steigung k der Tangente … | … ist der Funktionswert der Ableitung |
Zusammenhang zwischen höheren Ableitungen
Je mehr Ableitungen man von einer Funktion kennt, um so genauere Aussagen kann man über den Verlauf vom Graph der Funktion machen
\(f\left( {{x_0}} \right) = 0\) | ⇒ | f(x) hat eine Nullstelle an der Stelle x0 |
\(f'\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist streng monoton wachsend |
\(f'\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist streng monoton fallend |
\(f'\left( {{x_0}} \right) = 0\) | ⇒ | f(x0) hat eine waagrechte Tangente an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) hat Tiefpunkt / lokales Minimum an der Stelle x0 |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) hat Hochpunkt / lokales Maximum an der Stelle x0 |
\(f''\left( {{x_0}} \right) > 0\) | ⇒ | f(x0) ist links / positiv / konkav gekrümmt |
\(f''\left( {{x_0}} \right) < 0\) | ⇒ | f(x0) ist rechts / negativ / konvex gekrümmt |
\(f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Wendepunkt (Graph ändert sein Krümmungsverhalten) an der Stelle x0; Der WP ist jener Punkt, an dem f(x) die stärkste Steigung hat. |
\(f'\left( {{x_0}} \right) = 0{\text{ und }}f''\left( {{x_0}} \right) = 0{\text{ und }}f'''\left( {{x_0}} \right) \ne 0\) | ⇒ | f(x0) hat einen Sattelpunkt (=Wendepunkt mit waagrechter Tangente) an der Stelle x0 |
Graph mit Hochpunkt
Graph mit Tiefpunkt
Graph mit Wendepunkt
Graph mit Sattelpunkt
Aufgaben
Aufgabe 4035
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-B-Aufgaben
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Dreieckspannung - Aufgabe B_414
Teil b
Der in obiger Abbildung dargestellte dreieckförmige Spannungsverlauf kann mithilfe einer Fourier-Reihe beschrieben werden.
1. Teilaufgabe - Bearbeitungszeit 5:40
Argumentieren Sie anhand der grafischen Darstellung, warum die Fourier-Koeffizienten der Sinusschwingungen 0 sein müssen.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Ermitteln Sie den Gleichanteil der in obiger Abbildung 1 dargestellten Spannung.
[1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung in Ruhe entspannen
Aufgabe 1247
AHS - 1_247 & Lehrstoff: FA 1.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Symmetrie
Gegeben ist eine Potenzfunktion der Form \(f\left( x \right) = a \cdot {x^z} + b\) mit \({\text{a}} \ne {\text{0}}{\text{, b}} \in \mathbb{R}{\text{, z}} \in \mathbb{Z}{\text{\ }}\left\{ 0 \right\}\)
Aufgabenstellung
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine korrekte Aussage entsteht!
Falls z eine _____1_____ ist, ist der Graph von f immer symmetrisch _____2______ .
1 | |
gerade Zahl | A |
ungerade Zahl | B |
negative Zahl | C |
2 | |
zur x-Achse | I |
zur y-Achse | II |
zur 1. Mediane | III |
Aufgabe 1388
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. Jänner 2015 - Teil-1-Aufgaben - 10. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 11. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Symmetrische Polynomfunktion
Der Graph einer zur senkrechten Achse symmetrischen Polynomfunktion f besitzt den lokalen Tiefpunkt T = (3|–2).
Aufgabenstellung:
Begründen Sie, warum die Polynomfunktion f mindestens 4. Grades sein muss!
Aufgabe 4390
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Blumentopf - Aufgabe B_474
Teil a
Ein Unternehmen produziert Blumentöpfe. Der Außendurchmesser eines solchen Blumentopfs beträgt 40 cm. Auch die Gesamthöhe des Blumentopfs beträgt 40 cm. (Siehe nachstehende Abbildung der Begrenzungslinie. )
Für die Funktion f mit f(x) = y gilt:
\(y = \dfrac{{37}}{{{{19}^6}}} \cdot {x^6} + 3{\text{ mit }} - 19 \leqslant x \leqslant 19\)
1. Teilaufgabe - Bearbeitungszeit 5:40
Begründen Sie, warum f eine gerade Funktion ist.
[1 Punkt]
Die Innenwand des Blumentopfs entsteht durch Rotation des oben dargestellten Graphen von f um die y-Achse.
2. Teilaufgabe - Bearbeitungszeit 11:20
Berechnen Sie das Innenvolumen des Blumentopfs.
[2 Punkte]