Erlös
Hier findest du folgende Inhalte
Formeln
Erlösfunktion
Die Erlösfunktion (auch Umsatz- bzw. Ertragsfunktion), gibt den Erlös E (oft auch R für revenue) in Abhängigkeit von der abgesetzten Menge x an.
\(E\left( x \right) = p\left( x \right) \cdot x\)
In der Erlösfunktion ist der erzielbare Preis p(x) abhängig von der absetzbaren Menge x. Man kann daher ohne weiteres Wissen nichts über den Verlauf der Erlösfunktion aussagen. Aber eines gilt immer: Wenn man nichts produziert, kann man auch nichts verkaufen und somit nichts erlösen. Dh alle Erlösfunktionen müssen bei x=0 Null sein, also E(0)=0
Illustration von der Erlösfunktion und vom Grenzerlös
Ist die abgesetzte Menge null, dann ist auch der Erlös null. Bei geringer Angebotsmenge steigen die erzielbaren Preise und somit auch die Erlöse, bis bei weiter steigender Angebotsmenge zufolge eines Angebotsüberschusses die Preise und somit die Erlöse wieder zu sinken beginnen. Ist letztlich bei der Sättigungsmenge der erzielbare Preis null, so wird auch der Erlös ein zweites Mal zu null. Produziert man über die Sättigungsmenge hinaus, so wird der Erlös negativ.
Erlös bzw. Umsatz:
Der Erlös errechnet sich als Produkt vom Verkaufspreis mal der Anzahl der verkauften Mengeneinheiten.
Erlösfunktion bei vollständiger Konkurrenz
In der Erlösfunktion ist der erzielbare Preis abhängig von der absetzbaren Menge. In einem Polypol, wo viele Anbieter vielen Abnehmern gegenüber stehen, sodass niemand die Marktmacht hat, den Marktpreis wesentlich zu beeinflussen, ist der erzielbare Preis jedoch eine Konstante, also unabhängig von der absetzbaren Menge. Da bei vollständiger Konkurrenz der Marktpreis unbeeinflussbar ist, muss jeder Anbieter die von ihm angebotene Menge anpassen.
\(E\left( x \right) = R\left( x \right) = p \cdot x\)
Illustration von der Erlösfunktion und vom Grenzerlös bei vollständiger Konkurrenz, also bei konstantem weil mengenunabhängigem Preis
Bei konstantem Verkaufspreisen steigt der Erlös linear mit der abgesetzten Menge an. Der Grenzerlös, er ist die 1. Ableitung der linearen Erlösfunktion, ist eine Parallele zur x-Achse im Abstand p.
Die Erlösfunktion bei einem monopolistischen Anbieter
In der Erlösfunktion ist der erzielbare Preis abhängig von der absetzbaren Menge. In einem Monopol, wo ein einziger Anbieter den Preis und die angebotene Menge einseitig bestimmen kann, wird der Monopolist genau jene Menge anbieten, für die er den gewinnmaximalen Preis erzielt. Den Monopolisten bezeichnet man daher als "Mengenfixierer". Er gibt die angebotene Menge vor, somit ergibt sich der zugehörige Preis, den die Abnehmer bereit sind zu bezahlen.
\(E\left( x \right) = {p_N}\left( x \right) \cdot x\)
Grenzerlös
Der Grenzerlös ist der Erlöszuwachs, der aus dem Verkauf einer zusätzlichen marginal kleinen Mengeneinheit (dx) resultiert. Der Erlös ist dort maximal, wo der Grenzerlös null ist. An der Stelle wo der Grenzerlös null wird, liegt die optimale Produktionsmenge, bei welcher der maximale Ertrag erwirtschaftet wird.
\(E'\left( x \right) = \dfrac{{dE\left( x \right)}}{{\operatorname{dx} }}\)
Beispiel:
Gegeben ist die Umsatz- bzw. Erlösfunktion
\(E\left( x \right) = 540 \cdot x - {x^2}\)
Gesucht sind die optimale Produktionsmenge und der sich einstellende Preis und der zugehörige Gesamterlös!
\(\eqalign{
& E\left( x \right) = 540 \cdot x - {x^2} \cr
& 540 \cdot x - {x^2} = 0 \cr
& {x_1} = 0 \cr
& {x_2} = 540 \cr} \)
Die Erlösfunktion ist zwischen 0 und 540 Stück positiv. Bei 540 Stück liegt die Sättigungsmenge. Werden mehr Stück produziert, dann wird der Erlös negativ. Der Erlös ist dort maximal, wo der Grenzerlös E‘(x) null ist:
\(\eqalign{
& E'\left( x \right) = 540 - 2 \cdot x \cr
& E'\left( x \right) = 0 \cr
& 540 - 2 \cdot x = 0 \cr
& 540 = 2 \cdot x \cr
& x = \frac{{540}}{2} = 270 \cr} \)
Die optimale Produktionsenge beträgt 270 Stück.
\(\eqalign{
& E(x = 270) = 540 \cdot 270 - {270^2} = 72.900 \cr
& p\left( x \right) = \frac{{E\left( x \right)}}{x} = \frac{{72.900}}{{270}} = 270 \cr} \)
Dabei ergibt sich Gesamterlös von 72.900 Geldeinheiten und ein Preis von 270 Geldeinheiten pro Stück
Wenn die Produktionseinschränkungen durch Ungleichungen gegeben sind, die den zulässigen Lösungsbereich umfassen, dann liegt die optimale Produktionsmenge im optimlaen Punkt und dieser liegt dort, wo die Gerade der Zielfunktion den zulässigen Lösungsbereich berührt.
Im Fall von einem Angebotsüberschuss sinken die Preise, sodass mit jedem zusätzlich verkauften Produkt der Grenzerlös abnimmt. Wird letztlich der Grenzerlös kleiner als die Kosten der Herstellung eines zusätzlichen Produkts, dann bewirkt der zusätzliche Verkauf keine Gewinnsteigerung mehr, sondern im Gegenteil einen Verlust.
Illustration vom maximalen Ertrag
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 4420
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Fruchtsaftproduktion - Aufgabe B_483
Ein Unternehmen produziert den Fruchtsaft Mangomix.
Teil c
Der Erlös beim Verkauf des Fruchtsafts Mangomix kann durch eine quadratische Funktion E beschrieben werden:
\(E\left( x \right) = a \cdot {x^2} + b \cdot x{\text{ mit }}x \geqslant 0\)
x |
|
E(x) |
|
1. Teilaufgabe - Bearbeitungszeit 5:40
Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht.
[Lückentext] [1 Punkt]
Der Koeffizient a muss ____1____ sein, weil der Graph von E ____2____ .
- Satzteil 1.1: positiv
- Satzteil 1.2: negativ
- Satzteil 1.3: gleich null
- Satzteil 2.1: durch den Ursprung geht
- Satzteil 2.2: keinen Wendepunkt hat
- Satzteil 2.3: nach unten geöffnet ist
2. Teilaufgabe - Bearbeitungszeit 5:40
Weisen Sie nach, dass der maximale Erlös bei der Absatzmenge
\({x_0} = - \dfrac{b}{{2 \cdot a}}\)
erzielt wird.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!