Eigenschaften von Funktionen zuordnen - 1366. Aufgabe 1_366
Aufgabe 1366: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 8. Aufgabe
Hier findest du folgende Inhalte
1
Aufgaben
Aufgaben
Aufgabe 1366
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 17. September 2014 - Teil-1-Aufgaben - 8. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Eigenschaften von Funktionen zuordnen
Gegeben sind vier Funktionstypen. Für alle unten angeführten Funktionen gilt:
\(a \ne 0;b \ne 0;a,b \in {\Bbb R}\)
Aufgabenstellung:
Ordnen Sie den vier Funktionstypen jeweils die passende Eigenschaft (aus A bis F) zu!
- Funktionstyp 1: Lineare Funktion f mit \(f\left( x \right) = a \cdot x + b\)
- Funktionstyp 2: Exponentialfunktion f mit \(f\left( x \right) = a \cdot {b^x}{\text{ mit b > 0}}{\text{,b}} \ne {\text{1}}\)
- Funktionstyp 3: Wurzelfunktion f mit \(f\left( x \right) = a \cdot {x^{\dfrac{1}{2}}} + b\)
- Funktionstyp 4: Sinusfunktion f mit \(f\left( x \right) = a \cdot sin\left( {b \cdot x} \right)\)
- Eigenschaft A: Die Funktion f ist für a > 0 und 0 < b < 1 streng monoton fallend.
- Eigenschaft B: Die Funktion f besitzt genau drei Nullstellen.
- Eigenschaft C: Die Funktion f besitzt in jedem Punkt die gleiche Steigung.
- Eigenschaft D: Der Graph der Funktion f besitzt einen Wendepunkt im Ursprung.
- Eigenschaft E: Die Funktion f ist für b = 2 konstant.
- Eigenschaft F: Die Funktion f ist nur für x ≥ 0 definiert.
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
rgb(244,123,130)
Bild
