BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool B_T2_2.3
Quadratische Gleichungen in einer Variablen lösen und die verschiedenen möglichen Lösungsfälle inklusive komplexer Lösungen interpretieren
Hier findest du folgende Inhalte
Aufgaben
Aufgabe 4395
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 28. Mai 2020 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
W-LAN - Aufgabe B_475
In einer Fabrikshalle wird mit Access-Points und Repeatern ein W-LAN eingerichtet. Ein Access-Point verbindet einen Laptop kabellos mit einem Netzwerk. Ein Repeater verstärkt das Signal. Die Datenübertragungsrate beschreibt die übertragene Datenmenge pro Zeiteinheit und wird meist in der Einheit Megabit pro Sekunde (Mbit/s) angegeben.
Teil c
Im Rahmen einer Testinstallation werden in der Fabrikshalle ein Access-Point, ein Repeater und 2 Laptops auf gleich hohe Tische gestellt (siehe nachstehende schematische Abbildung, Ansicht von oben).
Im Punkt A = (30 | 0) befindet sich der Access-Point. Die Laptops in den Punkten P1 = (20 | 2) und P2 = (45 | 20) sollen diesen Access-Point nutzen können.
1. Teilaufgabe - Bearbeitungszeit 5:40
Zeigen Sie mithilfe der Vektorrechnung, dass der Winkel α kleiner als 120° ist.
[1 Punkt]
2. Teilaufgabe - Bearbeitungszeit 5:40
Zeichnen Sie in der obigen Abbildung denjenigen Punkt P3 ein, der folgendermaßen bestimmt werden kann:
\(\overrightarrow {O{P_3}} = \overrightarrow {O{P_2}} - \dfrac{1}{3} \cdot \overrightarrow {{P_1}{P_2}} \)
1 Punkt]
Ein Repeater soll im Punkt R = (xR | 30) in einem Abstand von 40 m vom Access-Point im Punkt A montiert werden (siehe obige Abbildung).
3. Teilaufgabe - Bearbeitungszeit 5:40
Berechnen Sie xR.
[1 Punkt]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!