Bedingte Wahrscheinlichkeit
Hier findest du folgende Inhalte
Formeln
Einstufige Zufallsexperimente und deren Wahrscheinlichkeiten
Ein Zufallsexperiment ist ein grundsätzlich beliebig oft wiederholbarer "Versuch", welcher unter identischen Bedingungen zu 2 oder mehreren nicht vorhersagbaren Ergebnissenführt. Dabei ist das zeitlich jeweils nächste Ergebnis unabhängig von den zeitlich vorhergehenden Ergebnissen.
Ergebnismenge \(\Omega\)
Ein Ergebnis ist der spezifische Ausgang von einem Zufallsexperiment. Die Ergebnismenge, auch Ergebnisraum genannt, ist die Menge aller möglichen Ergebnisse Ai eines Zufallsexperiments, die grundsätzlich auftreten können.
\(\Omega = \left\{ {{A_1},{A_2},...,{A_n}} \right\}\)
- Ergebnis eines einmaligen Würfelwurfs: "2 Augen"
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln ist \(\Omega = \left\{ {1;2;3;4;5;6} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Wurf einer Münze ist \(\Omega = \left\{ {{\rm{Kopf;Zahl}}} \right\}\)
- Die Menge aller möglichen Ergebnisse - also der Ergebnisraum \(\Omega\) - beim Würfeln mit 2 Würfeln ist \(\Omega = \left\{ {\left( {1;1} \right);\left( {1;2} \right);...;\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);....\left( {6;6} \right)} \right\}\)
Ereignismenge \(P\left( \Omega \right)\)
Ereignismengen, auch Ereignisräume genannt, sind Teilmengen der Ergebnismenge.
\(P\left( \Omega \right) = \left\{ {A\left| {A \subseteq \Omega } \right.} \right\}\)
Beispiel Würfel:
- Ergebnismenge: \(\Omega = \left\{ {{1},{2},...,{6}} \right\}\)
- Ereignismenge "nur" die gerade Augenzahl: \(\Omega = \left\{ {{2},{4},{6}} \right\}\)
Elementarereignis
Das Elementarereignis Ai ist eine Teilmenge der Ergebnismenge \(\Omega\) mit genau einem Element.
\({A_i} \in \Omega\)
Zur Veranschaulichung:
Wirft man einen Würfel, so umfasst die Ergebnismenge \(\Omega = \left\{ {1,2,3,4,5,6} \right\}\) genau 6 Elementarereignisse : 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Gegenereignis
Das Gegenereignis A‘ tritt genau dann ein, wenn das Ereignis A nicht eintritt. Alle Elemente des Ereignisses A und seines Gegenereignisses A‘ ergeben zusammen die Ergebnismenge \(\Omega\).
\(A' + A = \Omega\)
Die Verneinung vom Ereignis E heißt Gegenereignis \(\overline E \). Für ein Ereignis E und sein Gegenereignis \(\overline E \) gilt folgender Zusammenhang:
\(P\left( E \right) = 1 - P\left( {\overline E } \right)\)
Wahrscheinlichkeit
Die Wahrscheinlichkeit ist ein Maß dafür, wie wahrscheinlich der Eintritt eines Ereignisses ist. Bei der wiederholten Durchführung eines Zufallsexperiments tritt eine Abfolge von einzelnen Elementarereignissen Ai auf. Man kann zwar nicht vorhersagen genau welches Elementarereignis als nächstes auftritt, aber man kann eine Aussage darüber machen, wie häufig ein bestimmtes Elementarereignis im Vergleich zu den anderen Elementarereignissen auftritt. Die Wahrscheinlichkeit nach Laplace P(A)=P(X=x) leitet sich aus der Häufigkeit eines bestimmten Elementarereignisses, im Verhältniss zur Häufigkeit aller Elementarereignisse ab.
\(0 \leqslant P\left( A \right) \leqslant 1\) | Die Wahrscheinlichkeit dafür, dass ein beliebiges Elementarereignis eintritt, muss zwischen 0 und 1 liegen |
\(P\left( \Omega \right) = 1\) | Die Wahrscheinlichkeit dafür, dass alle Elementarereignisse eintreten, muss 1 sein. |
Gleichwahrscheinlichkeit
Eine Gleichwahrscheinlichkeit liegt vor, wenn jedes der n Elementarereignisse die gleiche Wahrscheinlichkeit 1/n hat.
Unbedingte Wahrscheinlichkeit P(A)
Die unbedingte Wahrscheinlichkeit gibt an, wie hoch die Wahrscheinlichkeit für den Eintritt eines Ereignisses ist, unabhängig von irgend welchen Vorbedingungen.
Beispiel: Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Nieder, weil es nur ca. 30 derartige Hitzetage pro Jahr gibt.
Bedingte Wahrscheinlichkeit P(B│A)
Die bedingte Wahrscheinlichkeit P(B|A) ist die Wahrscheinlichkeit für das Eintreten von B, unter der Voraussetzung (Bedingung), dass bereits das Ereignis A eingetreten ist, also bei von einander stochastisch abhängigen Ereignissen
\(P\left( {{B}\left| {{A}} \right.} \right) = \dfrac{{P\left( {{A} \cap {B}} \right)}}{{P\left( {{A}} \right)}}\)
Obige Formel ist lediglich die umformulierte Multiplikationsregeln für Wahrscheinlichkeiten ("Und Regel").
Beispiel: Heute wird in Wien eine Temperatur von 35° C gemessen. Wie hoch ist die Wahrscheinlichkeit, dass morgen in Wien die Temperatur 30° C überschreitet? Antwort: Hoch, da sich die Klimalage nur alle paar Tage verändert.
Gegenwahrscheinlichkeit
Die Gegenwahrscheinlichkeit vom Ereignis A ist die Wahrscheinlichkeit dafür, dass das Ereignis A nicht eintritt. Oft ist es einfacher die Gegenwahrscheinlichkeit von einem Ereignis auszurechnen und daraus die Wahrscheinlichkeit des Ereignisses selbst zurückzurechnen.
\(\eqalign{ & P\left( {A'} \right) = 1 - P\left( A \right) \cr & P\left( A \right) = 1 - P\left( {A'} \right) \cr}\)
Anmerkung zur Notation:
\(P\left( {A'} \right) = P\left( {\neg A} \right)\)
Bernoulli Experiment
Ein Bernoulli Experiment ist ein Zufallsexperiment, welches
- genau 2 mögliche Ergebnisse hat: Treffer / Niete.
- Die Wahrscheinlichkeit p für einen Treffer oder für eine Niete muss aber keinesfalls 50:50 bzw. 0,5 sein. Die Formel für die Laplace Wahrscheinlichkeit ("günstige" durch "mögliche") gilt auch für Bernoulli Experimente, da diese ja nur ein Sonderfall vom Laplace Experiment sind.
Beispiel: gerade und ungerade Tage im Jänner:
Jeder Tag muss entweder gerade oder ungerade sein, aber es gibt im Jänner 15 gerade aber 16 ungerade Tage.
\(\eqalign{ & P\left( {X = {\text{gerader Tag}}} \right) = \dfrac{{15}}{{31}} \cr & P\left( {X = {\text{ungerader Tag}}} \right) = \dfrac{{16}}{{31}} \cr} \)
Gegenwahrscheinlichkeiten in einem Bernoulli Experiment
Wenn in einem Bernoulli Experiment p die Wahrscheinlichkeit für einen Treffer ist, dann ist 1-p die Wahrscheinlichkeit für eine Niete, man nennt dies die Gegenwahrscheinlichkeit.
Laplace Experiment
Ein Laplace Experiment ist ein Zufallsexperiment, welches n mögliche Ergebnisse hat, wobei die Wahrscheinlichkeit für jedes der n Ergebnisse gleich groß ist. Man spricht dann von der Laplace Wahrscheinlichkeit.
Beispiel für ein Laplace Experiment: Würfelwurf; Es gibt 6 mögliche Elementarereignisse, die die gleiche Wahrscheinlichkeit haben. 1 Auge, 2 Augen, 3 Augen, 4 Augen, 5 Augen, 6 Augen
Laplace Wahrscheinlichkeit
Die Laplace Wahrscheinlichkeit P(E) gibt den relativen Anteil der „günstigen“ Versuchsausgänge zu den „möglichen“ Versuchsausgängen an. Sie ist also eine Maßzahl für die Chance, dass ein bestimmtes Ereignis E bei mehreren möglichen Ereignissen eintritt. Alle Elementarergebnisse / Ausgänge müssen die gleiche Eintrittswahrscheinlichkeit haben.
\(P\left( E \right) = \dfrac{{{\text{Anzahl der günstigen Fälle}}}}{{{\text{Anzahl der möglichen Fälle}}}}\)
wobei: \(0 \leqslant P\left( E \right) \leqslant 1{\text{ und }}P\left( 0 \right) = 0{\text{ sowie P}}\left( \Omega \right) = 1\)
E | Ereignisse A, B |
P(A) | Wahrscheinlichkeit für das Eintreten vom Ereignis A |
P(A)=1 | Das Ereignis tritt sicher ein |
P(A)=0 | Das Ereignis tritt sicher nicht ein |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Mehrstufige Zufallsexperimente und deren Wahrscheinlichkeiten
Führt man ein Zufallsexperiment mehrfach hintereinander aus, so spricht man von einem mehrstufigen Zufallsexperiment. Einfache Beispiele dafür sind das mehrfache Werfen einer Münze oder das mehrfache Werfen eines Würfels.
Formel von Bernoulli für Bernoulli-Ketten
Wird ein Bernoulli-Experiment n mal durchgeführt, so spricht man von einer Bernoulli-Kette der Länge n. Die bernoullische Formel gibt die Wahrscheinlichkeit für k Treffer bei n Wiederholungen eines Bernoulli-Experiments - einer sogenannten Bernoulli-Kette - an. Dabei ist für jeden einzelnen der k Treffer, p die Wahrscheinlichkeit für einen Treffer und (1-p) die Wahrscheinlichkeit für eine Niete. Die einzelnen Teilexperimente müssen von einander unabhängig sein. Jedes Einzelexperiment darf nur zwei mögliche Ausgänge haben.
\(P\left( {X = k} \right) = \left( \begin{gathered} n \\ k \\ \end{gathered} \right) \cdot {p^k} \cdot {\left( {1 - p} \right)^{n - k}}\)
P(X=k) | Wahrscheinlichkeit einer Binomialverteilung |
n | Anzahl der Wiederholungen eines Bernoulli-Experiments |
p | Wahrscheinlichkeit für einen Treffer im Bernoulli-Experiment |
k | Anzahl der Treffer bei n Wiederholungen, deren Reihenfolge ist irrelevant |
Beispiel: Würfel (→p=1/6=0,16667) wird 10 Mal geworfen (→n=10). Wie hoch ist die Wahrscheinlichkeit genau 3 Mal zwei Augen zu werfen (→k=3)
\(P\left( {K = 3} \right) = \left( {\begin{array}{*{20}{c}} {10}\\ 3 \end{array}} \right) \cdot {\left( {\dfrac{1}{6}} \right)^3} \cdot {\left( {1 - \dfrac{1}{6}} \right)^{10 - 3}} \approx 0,155 \buildrel \wedge \over = 15,5\% \)
Baumdiagramme
Baumdiagramme unterstützen visuell bei der Berechnung der Wahrscheinlichkeit bei mehrstufigen Zufallsexperimenten. Ein Baumdiagramm besteht aus Knoten und Zweigen. Ein Pfad startet bei einem Knoten, verläuft über einen oder mehrere Zweige und endet in einem Knoten.
Zweigwahrscheinlichkeiten
- Neben jeden Zweig schreibt man die Wahrscheinlichkeit, mit der das vom Zweig repräsentierte Zufallsereignis eintritt.
- Die Wahrscheinlichkeit aller Zweige, die von einem Konten weglaufen, summieren sich immer auf 1.
Pfadregeln bei der Lösung von Aufgaben mittels Baumdiagramm
- Produktregel: Die Wahrscheinlichkeit eines Ereignisses, welches durch einen Pfad dargestellt wird, ist gleich dem Produkt aller Einzelwahrscheinlichkeiten entlang dieses Pfades.
- Summenregel: Die Wahrscheinlichkeit eines Ereignisses, welches durch mehrere Pfade dargestellt wird, ist gleich der Summe aller zugehörigen Pfadwahrscheinlichkeiten
Illustration eines Baumdiagramms
Produktregel für die Wahrscheinlichkeit von unabhängigen Ereignissen ("Und" Regel)
Die Produktregel besagt, dass die Wahrscheinlichkeit eines Ereignisses, welches durch einen Pfad (mehrere Zweige in Serie) dargestellt wird (Pfadwahrscheinlichkeit), gleich ist dem Produkt aller Einzelwahrscheinlichkeiten entlang dieses Pfades. Mit anderen Worten: Sollten A und B unabhängige Ereignisse sein, dann gilt: Die Wahrscheinlichkeit, dass unabhängig voneinander das Ereignis A und auch das Ereignis B eintreten, ist gleich dem Produkt der beiden Einzelwahrscheinlichkeiten.
Das eine und das andere Ereignis treten ein: Schnittmenge:
\(P\left( {A \cap B} \right) = P\left( {A \wedge B} \right) = P\left( {{\text{A und B}}} \right) = P\left( A \right) \cdot P\left( B \right)\)
Merksatz: "Bei unabhängigen Ereignissen ist die Wahrscheinlichkeit von A und B ist gleich der Wahrscheinlichkeit von A mal B"
Beispiel: Ziehen mit Zurücklegen
Produktregeln für die Wahrscheinlichkeit von beliebigen Ereignissen ("Und Regel")
Sollten A und B zwei nicht notwendiger Weise unabhängige Ereignisse sein, dann gilt: Die Wahrscheinlichkeit, dass das Ereignis A und auch das Ereignis B eintreten, ist gleich der Eintrittswahrscheinlichkeit für A mal der Eintrittswahrscheinlichkeit für B, unter der Voraussetzung, dass bereits Ereignis A eingetreten ist.
\(P\left( {{A} \cap {B}} \right) = P\left( {{A}} \right) \cdot P\left( {{B}\left| {{A}} \right.} \right)\)
Beispiel: Ziehen ohne Zurücklegen
Summenregel für die Wahrscheinlichkeit von unabhängigen Ereignissen ("Oder" Regel)
Die Summenregel besagt, dass die Wahrscheinlichkeit eines Ereignisses, welches durch mehrere parallele Pfade dargestellt wird, gleich ist der Summe aller zugehörigen Pfadwahrscheinlichkeiten. Mit anderen Worten: Sollten A und B unvereinbare / disjunkte / einander gegenseitig ausschließende Ereignisse sein, dann gilt wegen \(P\left( {{A} \cap {B}} \right) = 0\) vereinfachend: Die Wahrscheinlichkeit, dass entweder das eine oder das andere von 2 disjunkten Ereignissen eintritt, ist gleich der Summe der Einzelwahrscheinlichkeiten.
Entweder das eine oder das andere Ereignisse tritt ein: Vereinigungsmenge
\(P\left( {A \cup B} \right) = P\left( {A \vee B} \right) = P\left( {{\text{A oder B}}} \right) = P\left( A \right) + P\left( B \right)\)
Nachfolgende Illustration veranschaulicht den Zusammenhang
Summenregeln für Wahrscheinlichkeiten von beliebigen Ereignissen ("Oder Regel")
Sollten A1 und A2 zwei beliebige Ereignisse sein, dann gilt: Die Wahrscheinlichkeit, dass entweder das beliebige Ereignis A eintritt oder das beliebiges Ereignis B eintritt, ist gleich der Summe ihrer Einzelwahrscheinlichkeiten, abzüglich der Wahrscheinlichkeit für das gemeinsame Eintreten beider Ereignisse.
\(P\left( {{A} \cup {B}} \right) = P\left( {{A}} \right) + P\left( {{B}} \right) - P\left( {{A} \cap {B}} \right) = P\left( {{A}} \right) + P\left( {{B}} \right) - P\left( {{A}} \right) \cdot P\left( {{B}} \right)\)
Für drei beliebige - also nicht notwendigerweise disjunkte - Ereignisse gilt:
\(P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\)
Nachfolgende Illustration veranschaulicht den Zusammenhang
Satz von Bayes - Formel für die bedingte Wahrscheinlichkeit von B unter der Bedingung A
Die bedingte Wahrscheinlichkeit P(B|A) ist die Wahrscheinlichkeit für das Eintreten von B, unter der Voraussetzung (Bedingung), dass bereits das Ereignis A eingetreten ist, also bei von einander stochastisch abhängigen Ereignissen
\(P\left( {{B}\left| {{A}} \right.} \right) = \dfrac{{P\left( {{A} \cap {B}} \right)}}{{P\left( {{A}} \right)}}\)
Der Satz von Bayes ermöglicht es die bedingte Wahrscheinlichkeit von \(P\left( {{A}\left| {{B}} \right.} \right)\) auszurechnen, wenn nur die umgekehrte bedingte Wahrscheinlichkeit \({P\left( {{B}\left| {{A}} \right.} \right)}\) und die beiden A-Priori-Wahrscheinlichkeiten \({P\left( {{A}} \right)}\) bzw. \({P\left( {{B}} \right)}\) bekannt sind und umgekehrt.
\(\eqalign{ & P\left( {A\left| B \right.} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \cr & = \dfrac{{P\left( A \right) \cdot P\left( {B\left| A \right.} \right)}}{{P\left( B \right)}} = \dfrac{{P\left( A \right) \cdot P\left( {B\left| A \right.} \right)}}{{P\left( A \right) \cdot P\left( {B\left| A \right.} \right) + P\left( {\overline A } \right) \cdot P\left( {B\left| {\overline A } \right.} \right)}} \cr} \)
\(P\left( {{A}\left| {{B}} \right.} \right)\) | Bedingte Wahrscheinlichkeit vom Ereignis A unter der Bedingung, dass Ereignis B schon eingetreten ist |
\({P\left( {{B}\left| {{A}} \right.} \right)}\) | Bedingte Wahrscheinlichkeit vom Ereignis B unter der Bedingung, dass Ereignis A schon eingetreten ist |
\({P\left( {{A}} \right)}\) | A-priori-Wahrscheinlichkeit für den Eintritt vom Ereignis A |
\({P\left( {{B}} \right)}\) | A-priori-Wahrscheinlichkeit für den Eintritt vom Ereignis B |
Vierfeldtafel zur Bestimmung bedingter Wahrscheinlichkeiten
Eine Vierfeldtafel eignet sich zur Bestimmung der Zusammenhänge zweier Ereignisse A und B
- Zuerst erfolgt die Beschriftung vom Ereignis und dem zugehörigen Gegenereignis in der 1. Zeile und der 1. Spalte
- Dann erfolgt die Beschriftung der Wahrscheinlichkeiten vom Ereignis A bzw. B und der Wahrscheinlichkeit vom zugehörigen Gegenereignis in der 4. Zeile und in der 4. Spalte
- Die Wahrscheinlichkeiten der Ereignisse \(A\) und \({\overline A }\) bzw. \(B\) und \({\overline B }\) addieren sich jeweils auf 1, was wir im Feld rechts unten eintragen.
- In die eigentlichen 4 Felder der Vierfeldtafel trägt man letztlich die Wahrscheinlichkeiten der Schnittmengen ein.
\(B\) | \({\overline B }\) | ||
\(A\) | \({P\left( {A \cap B} \right)}\) | \({P\left( {A \cap \overline B } \right)}\) | \({P\left( A \right)}\) |
\({\overline A }\) | \({P\left( {\overline A \cap B} \right)}\) | \({P\left( {\overline A \cap \overline B } \right)}\) | \({P\left( {\overline A } \right)}\) |
\({\sum }\) | \({P\left( B \right)}\) | \({P\left( {\overline B } \right)}\) | 1 |
- Die Wahrscheinlichkeiten in der 4. Zeile errechnet sich aus der Summe der beiden darüber stehenden Wahrscheinlichkeiten
- Die Wahrscheinlichkeiten in der 4. Spalte errechnet sich aus der Summe der beiden links stehenden Wahrscheinlichkeiten
Anstelle von Wahrscheinlichkeiten können in den Felder der Vierfeldtafel auch absoluten Häufigkeiten oder Prozentwerte stehen.
Abhängige bzw. unabhängige Ereignisse:
Zwei Ereignisse A bzw. B sind von einander abhängig, wenn das Eintreten vom Ereignis A das Eintreten vom Ereignis B beeinflusst. Unabhängige Ereignisse kann man einfacher berechnen als von einander abhängige Ereignisse.
Die Ereignisse A und B sind voneinander
- abhängig, wenn gilt: \(P\left( A \right) \cdot P\left( B \right) \ne P\left( {A \cap B} \right)\)
- unabhängig, wenn gilt: \(P\left( A \right) \cdot P\left( B \right) = P\left( {A \cap B} \right)\)
In obiger Vierfeldtafel können wir die 3 Werte wie folgt ablesen:
- P(A) lesen wir in der 1. Zeile in der letzten Zeile ab
- P(B) lesen wir in der 1. Spalte in der letzten Zeile ab
- P(A ∩ B) lesen wir in der 1. Zeile in der 1. Spalte ab
Visualisierung im Baumdiagramm
Satz von der totalen Wahrscheinlichkeit
Der Satz von der totalen Wahrscheinlichkeit ermöglicht es die Einzelwahrscheinlichkeiten aus den bedingten Wahrscheinlichkeiten zu berechnen.
\(\eqalign{ & P\left( A \right) = \sum\limits_{i = 1}^n {P\left( {{B_i}} \right) \cdot P\left( {A\left| {{B_i}} \right.} \right)} \cr & {\text{mit }}{{\text{B}}_1} \cup {B_2} \cup ... \cup {B_n} = \Omega \cr} \)
Beispiel:
n=2:
\(P\left( A \right) = P\left( B \right) \cdot P\left( {A\left| B \right.} \right) + P\left( {\overline B } \right) \cdot P\left( {A\left| {\overline B } \right.} \right)\)
Aufgaben
Aufgabe 5666
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 03. Mai 2022 - Teil-B Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Seminarprüfungen – Aufgabe B_548
Teil c
Eine Kommission untersucht die Ergebnisse mehrerer Prüfungen. Dabei wird beim Prüfungsergebnis zwischen „positiv“ und „negativ“, beim Geschlecht der Studierenden zwischen „männlich“ und „weiblich“ unterschieden. In der nachstehenden Vierfeldertafel sind die relativen Häufigkeiten für eine bestimmte Prüfung angegeben.
männlich | weiblich | Summe | |
positiv | 0,38 | 0,72 | |
negativ | 0,28 | ||
Summe | 0,58 | 0,42 | 1 |
1. Teilaufgabe - Bearbeitungszeit 05:40
Ergänzen Sie die leeren Felder der obigen Vierfeldertafel.
[0 / 1 P.]
Von den Studierenden wird eine Person zufällig ausgewählt.
2. Teilaufgabe - Bearbeitungszeit 05:40
Berechnen Sie die Wahrscheinlichkeit, dass diese Person männlich ist, wenn bekannt ist, dass die Person ein negatives Prüfungsergebnis hat.
[0 / 1 P.]
Bei einer anderen Prüfung geht die Kommission von einer (stochastischen) Unabhängigkeit zwischen dem Prüfungsergebnis und dem Geschlecht aus.
3. Teilaufgabe - Bearbeitungszeit 05:40
Ergänzen Sie unter Berücksichtigung dieser Voraussetzung die fehlenden Wahrscheinlichkeiten in der nachstehenden Vierfeldertafel.
[0 / 1 P.]
männlich | weiblich | Summe | |
positiv | 0,8 | ||
negativ | 0,2 | ||
Summe | 0,55 | 0,45 | 1 |
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!