Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Allgemeine Form der Ebenengleichung

Allgemeine Form der Ebenengleichung

\(\begin{array}{l} \varepsilon :a \cdot x + b \cdot y + c \cdot z = d\\ \overrightarrow n = \left( {\begin{array}{*{20}{c}} a\\ b\\ c \end{array}} \right) \end{array}\)

Hier findest du folgende Inhalte

1
Formeln
1
Aufgaben
    Formeln
    Wissenspfad
    Aufgaben

    Ebenengleichungen und ihre drei Darstellungsformen

    In der analytischen Geometrie werden Ebenen mit der Hilfe von Punkten und Vektoren dargestellt, nachfolgend die Parameterform, die Normalvektorform und die allgemeine Form der Ebenengleichung

    X=(x,y,z) beliebiger Punkt der Ebene
    P fester Punkt der Ebene, Aufpunkt
    \(\overrightarrow a\), \(\overrightarrow b\) Richtungsvektoren, die die Ebene aufspannen
    u, v Parameter
    \(\overrightarrow n\) Normalvektor der Ebene

     


    Parameterform der Ebenengleichung

    Es handelt sich bei beiden nachfolgend angeführten Schreibweisen um "Parameterformen" der Ebene, da man alle Punkte der Ebene dadurch erhält, indem man für die Parameter u und v unterschiedliche Zahlenwerte einsetzt.


    ​Ebene in Koordinatenschreibweise

    Jeder Punkt X der Ebene \(\varepsilon\)  kann ausgehend von einem Startpunkt \({\rm{P}} \in \varepsilon\) entlang zweier Richtungsvektoren \(\overrightarrow a\) und \(\overrightarrow b\)erreicht werden.
    \(\varepsilon :X = P + u.\overrightarrow a + v.\overrightarrow b \)

    \(\varepsilon :\left( {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right) = P + u \cdot \overrightarrow a + v \cdot \overrightarrow b \)

    \(\varepsilon :\left\{ \matrix{ x = {p_x} + u \cdot {a_x} + v \cdot {b_x} \cr y = {p_y} + u \cdot {a_y} + v \cdot {b_y} \cr z = {p_y} + u \cdot {a_z} + v \cdot {b_z} \cr} \right.\)


    Ortsvektor zu jedem Punkt X in der Ebene

    Der Ortsvektor ist der Vektor vom Ursprung des Koordinatensystems zu einem Punkt X

    \(\overrightarrow x = \left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + u \cdot \left( {\matrix{ {{a_x}} \cr {{a_y}} \cr {{a_z}} \cr } } \right) + v \cdot \left( {\matrix{ {{b_x}} \cr {{b_y}} \cr {{b_z}} \cr } } \right)\)


    Ebene durch 3 Punkte

    Die 3 Punkte dürfen nicht auf einer gemeinsamen Geraden liegen.

    \(P\left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right);\,\,\,Q\left( {\matrix{ {{q_x}} \cr {{q_y}} \cr {{q_z}} \cr } } \right);\,\,\,R\left( {\matrix{ {{r_x}} \cr {{r_y}} \cr {{r_z}} \cr } } \right)\)

    2 Richtungsvektoren spannen die Ebene auf:

    \(\overrightarrow {PQ} = \left( {\matrix{ {{q_x} - {p_x}} \cr {{q_y} - {p_y}} \cr {{q_z} - {p_z}} \cr } } \right);\,\,\,\overrightarrow {PR} = \left( {\matrix{ {{q_x} - {r_x}} \cr {{q_y} - {r_y}} \cr {{q_z} - {r_z}} \cr } } \right)\)

    Somit lautet die Ebenengleichung durch den Aufpunkt P und aufgespannt durch die beiden Richtungsvektoren:

    \(\varepsilon :X = \left( {\matrix{ {{p_x}} \cr {{p_y}} \cr {{p_z}} \cr } } \right) + u\left( {\matrix{ {{q_x} - {p_x}} \cr {{q_y} - {p_y}} \cr {{q_z} - {p_z}} \cr } } \right) + v\left( {\matrix{ {{q_x} - {r_x}} \cr {{q_y} - {r_y}} \cr {{q_z} - {r_z}} \cr } } \right)\)


    Normalvektorform der Ebenengleichung

    Bei der Normalvektorform der Ebene \(\varepsilon\) wird ein Aufpunkt P und ein Normalvektor \(\overrightarrow n\), welcher im rechten Winkel auf die Ebene steht, benötigt. Mit Hilfe dieser Bestimmungsgröße kann jeder beliebige Punkt X der Ebene berechnet werden. Die Koordinaten des Normalvektors sind zugleich die Koeffizienten der allgemeinen Form der Ebenengleichung


    Normalvektorform der Ebene, wenn der Aufpunkt P bekannt ist

    \(\begin{array}{l} \varepsilon :\overrightarrow n \cdot \left( {\overrightarrow X - P} \right) = 0\\ \overrightarrow n \cdot \overrightarrow X - \overrightarrow n \cdot P = 0 \end{array}\)


    Normalvektorform der Ebene, wenn der senkrechte Abstand d vom Koordinatenursprung bekannt ist

    Es gehören all jene Punkte X zur Ebene, für die das Skalarprodukt aus deren Ortsvektor mit dem Normalvektor dem minimalen Abstand vom Ursprung d entsprechen

    \(\varepsilon :\overrightarrow n \circ \overrightarrow X = d\)


    Hessesche Normalform der Ebene.

    Sie spielt eine wichtige Rolle bei der Bestimmung vom Abstand eines Punktes im Raum von der Ebene. Ersetzt man den Normalvektor durch dessen Einheitsvektor, so erhält man die hessesche Normalform

    \(\begin{array}{l} \varepsilon :\overrightarrow {{n_0}} \circ \left( {\overrightarrow X - \overrightarrow P } \right) = \dfrac{{\overrightarrow n }}{{\left| {\overrightarrow n } \right|}} \cdot (X - P) = 0\\ \varepsilon :\left( {\begin{array}{*{20}{c}} {{n_x}}\\ {{n_y}}\\ {{n_z}} \end{array}} \right) \circ \left[ {\left( {\begin{array}{*{20}{c}} {{x_x}}\\ {{x_y}}\\ {{x_z}} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {{p_x}}\\ {{p_y}}\\ {{p_z}} \end{array}} \right)} \right] = 0 \end{array}\)


    Allgemeine Form der Ebenengleichung

    Bei der allgmeinen Form einer Ebene sind die Koeffizienten a, b und c zugleich die Koordinaten des Normalvektors und die Variablen x, y und z sind die Koordinaten all jener Punkte X, die auf der Ebene liegen. Es handelt sich bei dieser Darstellungsform um eine lineare Funktion in impliziter Schreibweise, bei der die Koeffizienten a, b und c jedoch nicht willkürlich, sondern die Koordinaten vom Normalvektor sind.

    \(\begin{array}{l} \varepsilon :a \cdot x + b \cdot y + c \cdot z = d\\ \overrightarrow n = \left( {\begin{array}{*{20}{c}} a\\ b\\ c \end{array}} \right) \end{array}\)

    Parameterform der Ebenengleichung
    Normalvektorform der Ebenengleichung
    Allgemeine Form der Ebenengleichung
    Hessesche Normalform der Geraden bzw. der Ebene
    Normalvektor zur Ebene
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite
    Aufgaben
    Lösungsweg

    Aufgabe 6030

    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie

    Angabe mit freundlicher Genehmigung vom Bayerischen Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst


    Die Abbildung zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem

    Zifferblatt anzeigt. Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (siehe nachfolgende Abbildung).

    Bild
    Abitur 2015 Gymnasium Bayern - Prüfungsteil B - Geometrie

    Dabei beschreibt das Rechteck ABCD mit \(A\left( {5\left| { - 4\left| 0 \right.} \right.} \right)\) und \(B\left( {5\left| {4\left| 0 \right.} \right.} \right)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\left( {2,5\left| {0\left| 2 \right.} \right.} \right)\) des Rechtecks ABCD dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10cm in der Realität. Die Horizontale wird im Modell durch die x1x2-Ebene beschrieben.

    1. Teilaufgabe a.1) 2 BE - Bearbeitungszeit: 4:40

    Bestimmen Sie die Koordinaten des Punkts C.


    2. Teilaufgabe a.2) 3 BE - Bearbeitungszeit: 7:00

    Ermitteln Sie eine Gleichung der Ebene E, in der das Rechteck ABCD liegt, in Normalenform.

    (mögliches Teilergebnis: \(E:4{x_1} + 5{x_3} - 20 = 0\))


    Die Grundplatte ist gegenüber der Horizontalen um den Winkel α geneigt. Damit man mit der Sonnenuhr die Uhrzeit korrekt bestimmen kann, muss für den Breitengrad φ des Aufstellungsorts der Sonnenuhr \(\alpha + \varphi = 90^\circ \)  gelten.

    3. Teilaufgabe b) 4 BE - Bearbeitungszeit: 9:20

    Bestimmen Sie, für welchen Breitengrad φ die Sonnenuhr gebaut wurde.


    Der Polstab wird im Modell durch die Strecke \(\left[ {MS} \right]{\rm{ mit }}S\left( {4,5\left| {0\left| {4,5} \right.} \right.} \right)\) dargestellt.

    4. Teilaufgabe c.1) 1 BE - Bearbeitungszeit: 2:20

    Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht.


    5. Teilaufgabe c.2) 2 BE - Bearbeitungszeit: 4:40

    Berechnen Sie die Länge des Polstabs auf Zentimeter genau.


    Sonnenlicht, das an einem Sommertag zu einem bestimmten Zeitpunkt t0 auf die Sonnenuhr einfällt, wird im Modell durch parallele Geraden mit dem Richtungsvektor

    \(\overrightarrow u = \left( {\begin{array}{*{20}{c}} 6\\ 6\\ { - 13} \end{array}} \right)\)dargestellt.

    6. Teilaufgabe d) 6 BE - Bearbeitungszeit: 14:00

    Weisen Sie nach, dass der Schatten der im Modell durch den Punkt S dargestellten Spitze des Polstabs außerhalb der rechteckigen Grundplatte liegt.


    Um 6 Uhr verläuft der Schatten des Polstabs im Modell durch den Mittelpunkt der Kante \(\left[ {BC} \right]\),  um 12 Uhr durch den Mittelpunkt der Kante \(\left[ {AB} \right]\)  und um 18 Uhr durch den Mittelpunkt der Kante \(\left[ {AD} \right]\).

    7. Teilaufgabe e) 2 BE - Bearbeitungszeit: 4:40

    Begründen Sie, dass der (in Teilaufgabe c, Anm.) betrachtete Zeitpunkt t0 vor 12 Uhr liegt.


    Im Verlauf des Vormittags überstreicht der Schatten des Polstabs auf der Grundplatte in gleichen Zeiten gleich große Winkel.

    8. Teilaufgabe f) 3 BE - Bearbeitungszeit: 7:00

    Bestimmen Sie die Uhrzeit auf Minuten genau, zu der der Schatten des Polstabs im Modell durch den Punkt B verläuft.

    kostenlose Vorbereitung Mathe Abitur Bayern 2015 - Teil B - Geometrie
    Punkt Vektorform
    Normalvektorform der Ebenengleichung
    Allgemeine Form der Ebenengleichung
    Schnittwinkel zweier Ebenen
    Kreuzprodukt
    Parallele Vektoren
    Lineare Abhängigkeit zweier Vektoren
    Betrag eines Vektors
    Schnittwinkel schneidender Geraden
    Fragen oder Feedback

    Schon den nächsten Urlaub geplant?
    Auf maths2mind kostenlos auf Prüfungen vorbereiten!
    Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.

    Startseite
    rgb(244,123,130)
    Bild
    Illustration Poolliegen 1050 x 450
    Startseite

    maths2mind®

    Kostenlos und ohne Anmeldung
    Lehrstoff und Aufgabenpool

    verständliche Erklärungen
    schneller Lernerfolg
    mehr Freizeit

    /
    Bild
    Illustration - Lady with Laptop
    /

    Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

    Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

    • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
    • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
    • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
    • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
    • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
    • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
    • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
    • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
    • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
    • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
    • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
    • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
    • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
    • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
    • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

    Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

    /

    Fußzeile

    • FAQ
    • Über maths2mind
    • Cookie Richtlinie
    • Datenschutz
    • Impressum
    • AGB
    • Blog

    © 2022 maths2mind GmbH