AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 6.5
Aufgaben zum Inhaltsbereich FA 6.5: Wissen, dass cos(x) = sin(x + π/2)
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 6.5
Sinusfunktion, Cosinusfunktion
FA 6.5: Wissen, dass cos(x) = sin(x + π/2)
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgaben
Aufgabe 1139
AHS - 1_139 & Lehrstoff: FA 6.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Kosinusfunktion
Die Kosinusfunktion ist eine periodische Funktion.
Aufgabenstellung:
Zeichnen Sie in der obenstehenden Abbildung die Koordinatenachsen und deren Skalierung so ein, dass der angegebene Graph dem Graphen der Kosinusfunktion entspricht! Die Skalierung beider Achsen muss jeweils zwei Werte umfassen!
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.
Aufgabe 1530
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2017 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
Gegeben sind die Funktionen f und g mit \(f(x) = - \sin (x)\) bzw. \(g(x) = \cos (x)\).
Aufgabenstellung:
Geben Sie an, um welchen Wert \(b \in [0;2\pi ]\) in rad der Graph von f verschoben werden muss, um den Graphen von g zu erhalten, sodass \(-sin\left( {x + b} \right) = cos\left( x \right)\) gilt!
Aufgabe 1285
AHS - 1_285 & Lehrstoff: FA 6.5
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Zusammenhang zwischen Sinus- und Kosinusfunktion
Die Funktion cos(x) kann auch durch eine allgemeine Sinusfunktion beschrieben werden.
- Aussage 1: \(sin \left( {x + 2\pi } \right)\)
- Aussage 2: \(sin \left( {x + \dfrac{\pi }{2}} \right)\)
- Aussage 3: \(sin \left( {\dfrac{x}{2} - \pi } \right)\)
- Aussage 4: \(sin \left( {\dfrac{{x - \pi }}{2}} \right)\)
- Aussage 5: \(sin \left( {x - \dfrac{{3\pi }}{2}} \right)\)
Aufgabenstellung
Welche der obenstehend angeführten Sinusfunktionen beschreiben die Funktion cos(x)? Kreuzen Sie die beiden zutreffenden Funktionen an!
Aufgabe 1673
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2019 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktionen
In der unten stehenden Abbildung sind die Graphen der Funktionen f und g mit den Funktionsgleichungen
\(f\left( x \right) = \sin \left( x \right){\text{ und }}g\left( x \right) = \cos \left( x \right)\) dargestellt.
Für die in der Abbildung eingezeichneten Stellen a und b gilt: cos(a) = sin(b).
Aufgabenstellung:
Bestimmen Sie \(k \in {\Bbb R}\) so, dass \(b - a = k \cdot \pi \)
Aufgabe 1817
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2021 - Teil-1-Aufgaben - 12. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Winkelfunktion
Gegeben ist die Funktion \(f:{\Bbb R} \to {\Bbb R}{\text{ mit }}f\left( x \right) = 3 \cdot \cos \left( x \right)\) . Diese Funktion soll in der Form \(x \mapsto a \cdot \sin \left( {x + b} \right)\) dargestellt werden, mit \(\left( {a,b \in {\Bbb R}} \right)\).
Aufgabenstellung:
Geben Sie für a und b jeweils einen passenden Wert an.
- a=
- b=
[0 / ½ / 1 Punkt]
Schon den nächsten Urlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Nach der Prüfung mit dem gesparten Geld deinen Erfolg genießen.