AHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool FA 3.4
Aufgaben zum Inhaltsbereich FA 3.4: Indirekte Proportionalität als Potenzfunktion vom Typ \(f\left( x \right) = \dfrac{a}{x}\,\,\,bzw.\,\,\,f\left( x \right) = a \cdot {x^{ - 1}}\) beschreiben können
Hier findest du folgende Inhalte
Formeln
AHS Mathe Matura kostenlose Vorbereitung Inhaltsbereich FA 3.4
Potenzfunktion
\(\eqalign{
& f\left( x \right) = a \cdot {x^z} + b{\text{ mit }}z \in {\Bbb Z} \cr
& f\left( x \right) = a.{x^{\frac{1}{2}}} + b \cr} \)
FA 3.4: Indirekte Proportionalität als Potenzfunktion vom Typ \(f\left( x \right) = \dfrac{a}{x}\,\,\,bzw.\,\,\,f\left( x \right) = a \cdot {x^{ - 1}}\) beschreiben können
Auszugsweise zitiert gemäß: Die standardisierte schriftliche Reifeprüfung in Mathematik (AHS) Stand: Februar 2021
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgaben
Aufgabe 1102
AHS - 1_100 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Indirekte Proportionalität
t ist indirekt proportional zu x und y².
- Aussage 1: \(t = \dfrac{z}{{3 \cdot x \cdot {y^2}}}\)
- Aussage 2: \(t = \dfrac{{x \cdot z}}{{3 \cdot {y^2}}}\)
- Aussage 3: \(t = \dfrac{{x \cdot {y^2}}}{{3 \cdot z}}\)
- Aussage 4: \(t = \dfrac{{3 \cdot z}}{{x \cdot {y^2}}}\)
- Aussage 5: \(t = x \cdot {y^2} \cdot z\)
Aufgabenstellung:
Welche der angegebenen Formeln beschreiben diese Abhängigkeiten? Kreuzen Sie die beiden zutreffenden Formeln an!
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1268
AHS - 1_268 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Gleichung einer indirekten Proportionalität
Gegeben ist eine Funktion f mit der Gleichung \(f\left( x \right) = a \cdot {x^z} + b{\text{ wobei }}z \in {\Bbb Z}{\text{ und }}a,b \in {\Bbb R}\)
Aufgabenstellung:
Welche Werte müssen die Parameter b und z annehmen, damit durch f ein indirekt proportionaler Zusammenhang beschrieben wird? Ermitteln Sie die Werte der Parameter b und z!
Aufgabe 1461
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 15. Jänner 2016 - Teil-1-Aufgaben - 9. Aufgabe
Quelle: Distance-Learning-Check vom 15. April 2020 - Teil-1 Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Heizungstage
Die Anzahl der Heizungstage, für die ein Vorrat an Heizöl in einem Tank reicht, ist indirekt proportional zum durchschnittlichen Tagesverbrauch x (in Litern).
Aufgabenstellung:
In einem Tank befinden sich 1500 Liter Heizöl. Geben Sie einen Term an, der die Anzahl d(x) der Heizungstage in Abhängigkeit vom durchschnittlichen Tagesverbrauch x bestimmt!
Aufgabe 1117
AHS - 1_117 & Lehrstoff: FA 3.4
Quelle: Aufgabenpool für die SRP in Mathematik (12.2015)
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Ideales Gas
Die Abhängigkeit des Volumens V vom Druck p kann durch eine Funktion beschrieben werden. Bei gleichbleibender Temperatur ist das Volumen V eines idealen Gases zum Druck p indirekt proportional. 200 cm³ eines idealen Gases stehen bei konstanter Temperatur unter einem Druck von 1 bar.
Aufgabenstellung:
Geben Sie den Term der Funktionsgleichung an und zeichnen Sie deren Graphen!
Aufgabe 1767
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 28. Mai 2020 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Weinlese
Die sogenannte Weinlese (Ernte der Weintrauben) in einem Weingarten erfolgt umso schneller, je mehr Personen daran beteiligt sind. Die Funktion f modelliert den indirekt proportionalen Zusammenhang zwischen der für die Weinlese benötigten Zeit und der Anzahl der beteiligten Personen. Dabei ist f(n) die benötigte Zeit für die Weinlese, wenn n Personen beteiligt sind (n ∈ ℕ\{0}, f(n) in Stunden).
Aufgabenstellung:
Geben Sie f(n) an, wenn bekannt ist, dass die benötigte Zeit für die Weinlese bei einer Anzahl von 8 beteiligten Personen 6 Stunden beträgt.
f(n)=
wobei: \(n \in {\Bbb N}\backslash \left\{ 0 \right\}\)
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!
Aufgabe 1791
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 16. September 2020 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Druck und Volumen eines idealen Gases
Bei gleichbleibender Temperatur sind der Druck und das Volumen eines idealen Gases zueinander indirekt proportional. Die Funktion p ordnet dem Volumen V den Druck p(V) zu (V in m3, p(V) in Pascal).
Aufgabenstellung:
Geben Sie p(V) mit V ∈ ℝ+ an, wenn bei einem Volumen von 4 m3 der Druck 50 000 Pascal beträgt.
Aufgabe 1886
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 12. Jänner 2022 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Flächeninhalt von Rechtecken
Die Funktion f ordnet der Breite x (mit x > 0) eines Rechtecks mit dem Flächeninhalt 26 cm2 die Länge f(x) zu (x, f(x) in cm).
Aufgabenstellung - Bearbeitungszeit 05:40
Stellen Sie eine Funktionsgleichung von f auf.
f(x) =
[0 / 1 P.]
Aufgabe 11187
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 3. Mai 2022 - Teil-1-Aufgaben - 9. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Indirekte Proportionalität
Gegeben sind sechs Zuordnungen mit x ∈ ℝ+.
- Zuordnung 1: \(x \mapsto 3 - x\)
- Zuordnung 2: \(x \mapsto - \dfrac{x}{3}\)
- Zuordnung 3: \(x \mapsto \dfrac{3}{{{x^2}}}\)
- Zuordnung 4: \(x \mapsto 3 \cdot {x^{ - 1}}\)
- Zuordnung 5: \(x \mapsto {3^{ - x}}\)
- Zuordnung 6: \(x \mapsto {x^{ - 3}}\)
Aufgabenstellung - Bearbeitungszeit 05:40
Kreuzen Sie diejenige Zuordnung an, die eine indirekte Proportionalität beschreibt.
[1 aus 6]
[0 / 1 P.]
Aufgabe 11229
Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik
Quelle: AHS Matura vom 20. September 2022 - Teil-1-Aufgaben - 10. Aufgabe
Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind
Abfüllmaschinen
Werden vier gleich schnell arbeitende Abfüllmaschinen gleichzeitig eingesetzt, so benötigen sie 24 Minuten zum Befüllen von 6 000 Flaschen Mineralwasser. Die Funktion f ordnet einer Anzahl n solcher gleichzeitig arbeitender Abfüllmaschinen die Dauer f(n) zu, die für die Befüllung der 6 000 Flaschen benötigt wird (n ∈ ℕ\{0} und f(n) in Minuten).
Aufgabenstellung - Bearbeitungszeit 05:40
Stellen Sie eine Gleichung der Funktion f auf.
f(n) =
[0 / 1 P.]
Schon den nächsten Badeurlaub geplant?
Auf maths2mind kostenlos auf Prüfungen vorbereiten!
Damit niemand mehr bei Mathe in's Schwimmen kommt!