Direkt zum Inhalt

Maths2Mind Navigation

      • Terme und Zahlensysteme
      • Fest- und Gleitkommadarstellung, Zehnerpotenzen, SI-Präfixe
      • Teiler bzw Vielfache
      • Brüche und Rundungsregeln
      • Kartesische-, trigonometrische bzw. exponentielle Darstellung
      • Rechenoperationen mit komplexen Zahlen
      • Fundamentalsatz der Algebra
      • Quadratische Gleichungen mit komplexer Lösung
      • Die Schönheit der Fraktale und der Selbstähnlichkeit
      • Potenzieren
      • Wurzelziehen
      • Logarithmieren
      • Determinante
      • Matrizen
      • Lineare Gleichung mit einer Variablen
      • Quadratische Gleichung mit einer Variablen
      • Lineare Gleichungssyteme mit zwei Variablen
      • Lineare Ungleichung mit einer Variablen
      • Lineare Ungleichung mit zwei Variablen
      • Systeme linearer Ungleichungen mit einer Variablen
      • Systeme linearer Ungleichungen mit zwei Variablen
      • Quadratische Ungleichungen mit einer Variablen
      • Zahlenfolgen und Zahlenreihen
      • Modellbildung, Simulation
      • Zuordnungen
      • Eigenschaften einer Funktion
      • Lineare Funktion
      • Quadratische Funktionen (Parabel)
      • Polynomfunktionen
      • Gebrochenrationale Funktionen (Hyperbel)
      • Wurzelfunktionen
      • Potenzfunktionen
      • Exponentialfunktion
      • Logarithmusfunktion
      • Periodische Funktionen
      • Änderungsmaße
      • Differenzierbarkeit
      • Ableitungsfunktionen und Ableitungsregeln
      • Lineare Optimierung
      • Differentialgleichungen
      • Unbestimmtes Integral
      • Bestimmtes Integral
      • Stammfunktionen und Integrationsregeln
      • Numerische Integration
      • Integro-Differentialgleichungen
      • Geometrische Grundbegriffe
      • Koordinatensysteme
      • Ähnlichkeit und Kongruenz
      • Dreiecke
      • Vierecke
      • Polygone
      • Kreis, Kreissektor und Kreisbogen
      • Würfel, Quader, Prisma
      • Zylinder und Zylinderstumpf
      • Pyramide und Pyramidenstumpf
      • Kegel und Kegelstumpf
      • Kugel und Kugelkalotte
      • Winkel- und Arkusfunktionen
      • Hyperbel- und Areafunktionen
      • Vektoren
      • Vektoralgebra
      • Vektoranalysis
      • Gleichungen von Punkt, Gerade und Ebene
      • Gleichungen von Kreis, Kugel und Kegelschnitten
      • Kombinatorik
      • Beschreibende Statistik - Lagemaße
      • Beschreibende Statistik - Streumaße
      • Schließende Statistik - Wahrscheinlichkeitsrechnung
      • Explorative Statistik - Data Mining
      • Aussagen
      • Mengen
      • Prüfungsteil A - Analysis
      • Prüfungsteil A - Stochastik
      • Prüfungsteil A - Geometrie
      • Prüfungsteil B - Analysis
      • Prüfungsteil B - Stochastik
      • Prüfungsteil B - Geometrie
      • Typ 1 - Algebra und Geometrie
      • Typ 1 - Analysis
      • Typ 1 - Funktionale Abhängigkeiten
      • Typ 1 - Wahrscheinlichkeit und Statistik
      • Typ 2 - Vernetzung der Grundkompetenzen
      • Teil A Aufgaben für alle Cluster
      • Teil B Aufgaben für spezielle Cluster
      • Zins- und Zinseszinsrechnung
      • Prozent- und Promillerechnung
      • Rentenrechnung
      • Kosten- und Preistheorie
      • Investitionsrechnung
      • Künstliche Intelligenz
      • GeoGebra
      • Berechnung von Gleichstromkreisen
      • Berechnung von Wechselstromkreisen
      • Berechnung von Drehstromsystemen
      • Elektromagnetische Felder
      • Komponenten elektrischer Energienetze
      • Fourier Analyse
      • Basiseinheiten der Physik und die Naturkonstanten
      • Mechanik
      • Thermodynamik
      • Relativitätstheorien
      • Atom- und Kernphysik
      • Strahlen- und Wellentheorie des Lichtes
      • Vom Photon zum Photo
      • Photovoltaik
      • Quantenphysik
      • Standardmodell der Kosmologie
      • Standardmodell der Elementarteilchen
      • Die 4 Wechselwirkungen und der Higgs Mechanismus
      • Recruiting & Branding
      • Zusammenarbeit mit LehrerInnen und Dozenten
      • Angeleitetes autonomes Lernen
      • Testbilder
      • Taxonomie
Maths2Mind

Social Media

User account menu

  • Anmelden
Kritik, Lob, Wünsche oder Verbesserungsvorschläge?
Nehmt Euch kurz Zeit, klickt hier und schreibt an
feedback@maths2mind.com
Deine Meinung ist uns wichtig!
/contact?edit%5Bsubject%5D%5Bwidget%5D%5B0%5D%5Bvalue%5D=Nutzerfeedback

Pfadnavigation

  1. Maths2Mind
  2. Prüfungsvorbereitung Matura, Abitur und STEOP
  3. Matura Österreich BHS - Angewandte Mathematik
  4. Teil A Aufgaben für alle Cluster
  5. Aufgabe 4000

Aufgabe 4000

Standardisierte kompetenzorientierte schriftliche Reifeprüfung Angewandte Mathematik
Quelle: BHS Matura vom 10. Mai 2017 - Teil-A Aufgabe
​Angabe mit freundlicher Genehmigung vom Bundesministerium für Bildung; Lösungsweg: Maths2Mind


Vergnügungspark - Aufgabe A_249

Teil a

Bei einer Besucherbefragung in einem Vergnügungspark wurden folgende Daten erhoben:

  • 60 % der Besucher sind aus dem Inland. Die Besucher aus dem Inland reisen zu 45 % mit dem PKW an, die restlichen Besucher aus dem Inland mit öffentlichen Verkehrsmitteln.
  • 90 % der Besucher aus dem Ausland reisen mit öffentlichen Verkehrsmitteln an, die restlichen Besucher aus dem Ausland mit dem PKW.

1. Teilaufgabe - Bearbeitungszeit 5:40

Vervollständigen Sie das nachstehende Baumdiagramm so, dass es den beschriebenen Sachverhalt wiedergibt. [1 Punkt]

Vieleck Vieleck1 Vieleck Vieleck1: Vieleck(L_1, M_1, 4) Vieleck Vieleck1 Vieleck Vieleck1: Vieleck(L_1, M_1, 4) Vieleck Vieleck1_1 Vieleck Vieleck1_1: Vieleck(L_2, M_2, 4) Vieleck Vieleck1_1 Vieleck Vieleck1_1: Vieleck(L_2, M_2, 4) Vieleck Vieleck1_2 Vieleck Vieleck1_2: Vieleck(L_3, M_3, 4) Vieleck Vieleck1_2 Vieleck Vieleck1_2: Vieleck(L_3, M_3, 4) Vieleck Vieleck1_3 Vieleck Vieleck1_3: Vieleck(L_4, M_4, 4) Vieleck Vieleck1_3 Vieleck Vieleck1_3: Vieleck(L_4, M_4, 4) Vieleck Vieleck1_4 Vieleck Vieleck1_4: Vieleck(L_5, M_5, 4) Vieleck Vieleck1_4 Vieleck Vieleck1_4: Vieleck(L_5, M_5, 4) Vieleck Vieleck1_5 Vieleck Vieleck1_5: Vieleck(L_6, M_6, 4) Vieleck Vieleck1_5 Vieleck Vieleck1_5: Vieleck(L_6, M_6, 4) Strecke f Strecke f: Strecke A, B Strecke g Strecke g: Strecke A, C Strecke d Strecke d: Strecke D, E Strecke e Strecke e: Strecke E, F Strecke f_1 Strecke f_1: Strecke F, G Strecke g_1 Strecke g_1: Strecke G, D Strecke h Strecke h: Strecke H, I Strecke i Strecke i: Strecke I, J Strecke j Strecke j: Strecke J, K Strecke k Strecke k: Strecke K, H Strecke l Strecke l: Strecke L, M Strecke m Strecke m: Strecke N, O Strecke n Strecke n: Strecke P, Q Strecke p Strecke p: Strecke R, S Strecke t Strecke t: Strecke T, U Strecke u Strecke u: Strecke U, V Strecke v Strecke v: Strecke V, W Strecke w Strecke w: Strecke W, T Strecke z_1 Strecke z_1: Strecke Z, A_1 Strecke a_1 Strecke a_1: Strecke A_1, B_1 Strecke b_1 Strecke b_1: Strecke B_1, C_1 Strecke c_1 Strecke c_1: Strecke C_1, Z Strecke d_1 Strecke d_1: Strecke D_1, E_1 Strecke e_1 Strecke e_1: Strecke E_1, F_1 Strecke f_2 Strecke f_2: Strecke F_1, G_1 Strecke g_2 Strecke g_2: Strecke G_1, D_1 Strecke h_1 Strecke h_1: Strecke H_1, I_1 Strecke i_1 Strecke i_1: Strecke I_1, J_1 Strecke j_1 Strecke j_1: Strecke J_1, K_1 Strecke k_1 Strecke k_1: Strecke K_1, H_1 Strecke q Strecke q: Strecke L_1, M_1 Strecke r Strecke r: Strecke M_1, N_1 Strecke s Strecke s: Strecke N_1, O_1 Strecke a Strecke a: Strecke O_1, L_1 Strecke q_1 Strecke q_1: Strecke L_2, M_2 Strecke r_1 Strecke r_1: Strecke M_2, N_2 Strecke s_1 Strecke s_1: Strecke N_2, O_2 Strecke a_2 Strecke a_2: Strecke O_2, L_2 Strecke q_2 Strecke q_2: Strecke L_3, M_3 Strecke r_2 Strecke r_2: Strecke M_3, N_3 Strecke s_2 Strecke s_2: Strecke N_3, O_3 Strecke a_3 Strecke a_3: Strecke O_3, L_3 Strecke q_3 Strecke q_3: Strecke L_4, M_4 Strecke r_3 Strecke r_3: Strecke M_4, N_4 Strecke s_3 Strecke s_3: Strecke N_4, O_4 Strecke a_4 Strecke a_4: Strecke O_4, L_4 Strecke q_4 Strecke q_4: Strecke L_5, M_5 Strecke r_4 Strecke r_4: Strecke M_5, N_5 Strecke s_4 Strecke s_4: Strecke N_5, O_5 Strecke a_5 Strecke a_5: Strecke O_5, L_5 Strecke q_5 Strecke q_5: Strecke L_6, M_6 Strecke r_5 Strecke r_5: Strecke M_6, N_6 Strecke s_5 Strecke s_5: Strecke N_6, O_6 Strecke a_6 Strecke a_6: Strecke O_6, L_6

Lösungsweg

1. Teilaufgabe:
Folgende Beschriftungsschritte führen wir im Baumdiagramm durch:

  • 2: Zeile: Zunächst unterscheiden wir nach "Besuchern aus dem Inland" und nach "Besuchern aus dem Ausland".
  • 1. Zeile: Danach tragen wir deren Verhältnis von 60% Inland und 40% Ausland als 0,6 bzw. 0,4 in die entsprechenden Felder ein.
  • 4. Zeile: Weiters unterscheiden wir danach ob die Besucher mit "öffentlichen Verkehrsmitteln" oder mit dem "PKW" angereist sind
  • 3. Zeile links: 45% der Besucher aus dem Inland reisen mit dem PKW an, die restlichen Besucher (100%-45%=)55% reist mit öffentlichen Verkehrsmittel an. Wir tragen somit 0,45 und 0,55 in die entsprechenden Felder ein.
  • 3. Zeile rechts: : 90% der Besucher aus dem Ausland reisen mit dem PKW an, die restlichen Besucher (100%-90%=)10% reist mit öffentlichen Verkehrsmittel an. Wir tragen somit 0,9 und 0,1 in die entsprechenden Felder ein.

Ergebnis

Die richtige Lösung lautet:
1. Teilaufgabe:
Vieleck Vieleck1 Vieleck Vieleck1: Vieleck(L_1, M_1, 4) Vieleck Vieleck1 Vieleck Vieleck1: Vieleck(L_1, M_1, 4) Vieleck Vieleck1_1 Vieleck Vieleck1_1: Vieleck(L_2, M_2, 4) Vieleck Vieleck1_1 Vieleck Vieleck1_1: Vieleck(L_2, M_2, 4) Vieleck Vieleck1_2 Vieleck Vieleck1_2: Vieleck(L_3, M_3, 4) Vieleck Vieleck1_2 Vieleck Vieleck1_2: Vieleck(L_3, M_3, 4) Vieleck Vieleck1_3 Vieleck Vieleck1_3: Vieleck(L_4, M_4, 4) Vieleck Vieleck1_3 Vieleck Vieleck1_3: Vieleck(L_4, M_4, 4) Vieleck Vieleck1_4 Vieleck Vieleck1_4: Vieleck(L_5, M_5, 4) Vieleck Vieleck1_4 Vieleck Vieleck1_4: Vieleck(L_5, M_5, 4) Vieleck Vieleck1_5 Vieleck Vieleck1_5: Vieleck(L_6, M_6, 4) Vieleck Vieleck1_5 Vieleck Vieleck1_5: Vieleck(L_6, M_6, 4) Strecke f Strecke f: Strecke A, B Strecke g Strecke g: Strecke A, C Strecke d Strecke d: Strecke D, E Strecke e Strecke e: Strecke E, F Strecke f_1 Strecke f_1: Strecke F, G Strecke g_1 Strecke g_1: Strecke G, D Strecke h Strecke h: Strecke H, I Strecke i Strecke i: Strecke I, J Strecke j Strecke j: Strecke J, K Strecke k Strecke k: Strecke K, H Strecke l Strecke l: Strecke L, M Strecke m Strecke m: Strecke N, O Strecke n Strecke n: Strecke P, Q Strecke p Strecke p: Strecke R, S Strecke t Strecke t: Strecke T, U Strecke u Strecke u: Strecke U, V Strecke v Strecke v: Strecke V, W Strecke w Strecke w: Strecke W, T Strecke z_1 Strecke z_1: Strecke Z, A_1 Strecke a_1 Strecke a_1: Strecke A_1, B_1 Strecke b_1 Strecke b_1: Strecke B_1, C_1 Strecke c_1 Strecke c_1: Strecke C_1, Z Strecke d_1 Strecke d_1: Strecke D_1, E_1 Strecke e_1 Strecke e_1: Strecke E_1, F_1 Strecke f_2 Strecke f_2: Strecke F_1, G_1 Strecke g_2 Strecke g_2: Strecke G_1, D_1 Strecke h_1 Strecke h_1: Strecke H_1, I_1 Strecke i_1 Strecke i_1: Strecke I_1, J_1 Strecke j_1 Strecke j_1: Strecke J_1, K_1 Strecke k_1 Strecke k_1: Strecke K_1, H_1 Strecke q Strecke q: Strecke L_1, M_1 Strecke r Strecke r: Strecke M_1, N_1 Strecke s Strecke s: Strecke N_1, O_1 Strecke a Strecke a: Strecke O_1, L_1 Strecke q_1 Strecke q_1: Strecke L_2, M_2 Strecke r_1 Strecke r_1: Strecke M_2, N_2 Strecke s_1 Strecke s_1: Strecke N_2, O_2 Strecke a_2 Strecke a_2: Strecke O_2, L_2 Strecke q_2 Strecke q_2: Strecke L_3, M_3 Strecke r_2 Strecke r_2: Strecke M_3, N_3 Strecke s_2 Strecke s_2: Strecke N_3, O_3 Strecke a_3 Strecke a_3: Strecke O_3, L_3 Strecke q_3 Strecke q_3: Strecke L_4, M_4 Strecke r_3 Strecke r_3: Strecke M_4, N_4 Strecke s_3 Strecke s_3: Strecke N_4, O_4 Strecke a_4 Strecke a_4: Strecke O_4, L_4 Strecke q_4 Strecke q_4: Strecke L_5, M_5 Strecke r_4 Strecke r_4: Strecke M_5, N_5 Strecke s_4 Strecke s_4: Strecke N_5, O_5 Strecke a_5 Strecke a_5: Strecke O_5, L_5 Strecke q_5 Strecke q_5: Strecke L_6, M_6 Strecke r_5 Strecke r_5: Strecke M_6, N_6 Strecke s_5 Strecke s_5: Strecke N_6, O_6 Strecke a_6 Strecke a_6: Strecke O_6, L_6 0,6 Text1 = “0,6” 0,4 Text2 = “0,4” Besucher aus dem Inland Text3 = “Besucher aus dem Inland” Besucher aus dem Inland Text3 = “Besucher aus dem Inland” Besucher aus dem Ausland Text4 = “Besucher aus dem Ausland” Besucher aus dem Ausland Text4 = “Besucher aus dem Ausland” 0,45 Text5 = “0,45” 0,55 Text6 = “0,55” 0,1 Text7 = “0,1” 0,9 Text8 = “0,9” PKW Text9 = “PKW” öffentl. Verkehrsmittel Text10 = “öffentl. Verkehrsmittel” öffentl. Verkehrsmittel Text10 = “öffentl. Verkehrsmittel” PKW Text11 = “PKW” öffentl. Verkehrsmittel Text12 = “öffentl. Verkehrsmittel” öffentl. Verkehrsmittel Text12 = “öffentl. Verkehrsmittel”


Lösungsschlüssel
1. Teilaufgabe:
1 × A: Für das richtige Vervollständigen des Baumdiagramms (KA)

Weiterführende Informationen

Vergnügungspark - Aufgabe A_249
kostenlose Mathematik Maturavorbereitung - BHS - Aufgabenpool alle Cluster
Baumdiagramm
Mathematik Zentralmatura BHS - Mai 2017 - kostenlos vorgerechnet
Wahrscheinlichkeit
BHS Mathe Matura kostenlose Vorbereitung - Aufgabenpool 5.4
Fragen oder Feedback

maths2mind®

Kostenlos und ohne Anmeldung
Lehrstoff und Aufgabenpool

verständliche Erklärungen
schneller Lernerfolg
mehr Freizeit

/
Bild
Illustration - Lady with Tablet
/

Maths2Mind ist ein einzigartiges Angebot, einerseits zur Mathematik-Matura bzw. Abiturvorbereitung, andererseits zur Vermittlung eines breiten Grundlagenwissens zu den MINT-Fächern Mathematik, Elektrotechnik und Physik, das sich von anderen Online-Ressourcen abhebt.

Hier sind einige der wesentlichen Alleinstellungsmerkmale von maths2mind.com:

  • Kostenlose Prüfungsvorbereitung: Nicht jede Familie kann es sich leisten, für Prüfungsvorbereitung zu bezahlen. Nutzer von maths2mind benötigen keine Kreditkarte, da es keine kostenpflichtigen Abonnementpakete gibt. Alle Inhalte sind kostenlos zugänglich!
  • Privatsphäre: Es werden keine zustimmungspflichtigen Cookies verwendet, es gibt keine webseitenübergreifende oder personalisierte Werbung. 
  • Anonymes Lernen: Alle Inhalte sind ohne Anmeldung zugänglich, sodass Schüler anonym lernen können.
  • Autoren Dream-Team: Die Inhalte werden von Experten mit facheinschlägigem Universitätsabschluss erstellt. Zusätzlich erfolgte eine Recherche auf Vollständigkeit mittels künstlicher Intelligenz.
  • Probeschularbeiten: Lehrer können bei jeder Aufgabe einen Link kopieren, und durch simples "kopieren - einfügen" eine Probeschularbeit zusammenstellen und diese ihren Schülern elektronisch zum Selbststudium verfügbar machen.
  • Verständliche Erklärungen – schneller Lernerfolg – mehr Freizeit: Ehemalige Matura- bzw. Abiturbeispiele werden schriftlich vorgerechnet, damit Schüler den vollständigen Rechenweg 1:1 nachvollziehen können. Die ehemaligen Aufgaben sind sowohl chronologisch nach Prüfungstermin, als auch inhaltlich nach Lehrstoff sortiert, mittels anklickbarer Tags auffindbar.
  • Vernetzung von Lehrstoff und Rechenaufgaben über Tags: "Aufgaben passend zum Lernstoff" oder "Grundlagenwissen zur jeweiligen Aufgabe" sind mittels Tags leicht zu finden.
  • 1.000 Videos zum Rechenweg: Auch Dank der freundlichen Genehmigung des Bundesministeriums für Bildung, binden wir direkt in den Lösungsweg von Maturabeispielen, videobasierte Erklärungen ein.
  • 4.000 MINT-Fachbegriffe: Nutzer können gezielt nach Fachbegriffen suchen. Bei mehreren Treffern erfolgt die Auswahl über stichwortartige Zusammenfassungen.
  • 2.000 GeoGebra Illustrationen: Alle unsere rd. 2.000 selbst erstellten vektorbasierten Grafiken wurden mit GeoGebra erstellt. Zusätzlich verlinken wir auf anschauliche interaktive Illustrationen auf der GeoGebra Lernplattform.
  • Exzellent lesbare MINT-Inhalte: Die Inhalte sind vektorbasiert und daher auf allen Geräten, vom Smartphone bis zum XXL-Screen, gestochen scharf lesbar. Das gilt besonders für komplexe Formeln und anschauliche Illustrationen.
  • Wissenspfade: Zu jeder Lerneinheit werden gut strukturiert empfohlenes Vorwissen, verbreiterndes und vertiefendes Wissen angezeigt.
  • Umfassende Unterstützung: Maths2mind begleitet Schüler bis zum erfolgreichen Lehrabschluss mit Matura, dem Berufseinstieg nach Matura/Abitur und auch beim Studieneinstieg.
  • Soziale Mission: Als E-Learning Plattform mit sozialer Mission bietet maths2mind Chancen-Fairness durch genderneutralen Bildungszugang. Unabhängig von sozioökonomischem Umfeld, Wohnort, Einstellung oder Kulturkreis der Eltern, Sympathiewert des Lehrenden, finanzieller Schulausstattung oder Tagespolitik.
  • Kostenlose Fragen per E-Mail: Bei Unklarheiten können Fragen kostenlos per E-Mail gestellt werden.

Maths2Mind.com ist somit eine umfassende Plattform, die nicht nur Wissen vermittelt, sondern auch auf individuelle Bedürfnisse eingeht und einen fairen Zugang zur Bildung ermöglicht.

/

Fußzeile

  • FAQ
  • Über maths2mind
  • Cookie Richtlinie
  • Datenschutz
  • Impressum
  • AGB
  • Blog

© 2022 maths2mind GmbH